skip to main content


Title: Pushing the limits of high-resolution polymer microscopy using antioxidants
Abstract

High-resolution transmission electron microscopy (HRTEM) has been transformative to the field of polymer science, enabling the direct imaging of molecular structures. Although some materials have remarkable stability under electron beams, most HRTEM studies are limited by the electron dose the sample can handle. Beam damage of conjugated polymers is not yet fully understood, but it has been suggested that the diffusion of secondary reacting species may play a role. As such, we examine the effect of the addition of antioxidants to a series of solution-processable conjugated polymers as an approach to mitigating beam damage. Characterizing the effects of beam damage by calculating critical doseDCvalues from the decay of electron diffraction peaks shows that beam damage of conjugated polymers in the TEM can be minimized by using antioxidants at room temperature, even if the antioxidant does not alter or incorporate into polymer crystals. As a consequence, the addition of antioxidants pushes the resolution limit of polymer microscopy, enabling imaging of a 3.6 Å lattice spacing in poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3″′-di(2-octyldodecyl)-2,2′;5′,2″;5″,2″′-quaterthiophene-5,5″′-diyl)] (PffBT4T-2OD).

 
more » « less
Award ID(s):
1905550
NSF-PAR ID:
10209178
Author(s) / Creator(s):
;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Rich electron-matter interactions fundamentally enable electron probe studies of materials such as scanning transmission electron microscopy (STEM). Inelastic interactions often result in structural modifications of the material, ultimately limiting the quality of electron probe measurements. However, atomistic mechanisms of inelastic-scattering-driven transformations are difficult to characterize. Here, we report direct visualization of radiolysis-driven restructuring of rutile TiO2under electron beam irradiation. Using annular dark field imaging and electron energy-loss spectroscopy signals, STEM probes revealed the progressive filling of atomically sharp nanometer-wide cracks with striking atomic resolution detail. STEM probes of varying beam energy and precisely controlled electron dose were found to constructively restructure rutile TiO2according to a quantified radiolytic mechanism. Based on direct experimental observation, a “two-step rolling” model of mobile octahedral building blocks enabling radiolysis-driven atomic migration is introduced. Such controlled electron beam-induced radiolytic restructuring can be used to engineer novel nanostructures atom-by-atom.

     
    more » « less
  2. The rational creation of two-component conjugated polymer systems with high levels of phase purity in each component is challenging but crucial for realizing printed soft-matter electronics. Here, we report a mixed-flow microfluidic printing (MFMP) approach for two-componentπ-polymer systems that significantly elevates phase purity in bulk-heterojunction solar cells and thin-film transistors. MFMP integrates laminar and extensional flows using a specially microstructured shear blade, designed with fluid flow simulation tools to tune the flow patterns and induce shear, stretch, and pushout effects. This optimizes polymer conformation and semiconducting blend order as assessed by atomic force microscopy (AFM), transmission electron microscopy (TEM), grazing incidence wide-angle X-ray scattering (GIWAXS), resonant soft X-ray scattering (R-SoXS), photovoltaic response, and field effect mobility. For printed all-polymer (poly[(5,6-difluoro-2-octyl-2H-benzotriazole-4,7-diyl)-2,5-thiophenediyl[4,8-bis[5-(2-hexyldecyl)-2-thienyl]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl]-2,5-thiophenediyl]) [J51]:(poly{[N,N′-bis(2-octyldodecyl)naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5′-(2,2′-bithiophene)}) [N2200]) solar cells, this approach enhances short-circuit currents and fill factors, with power conversion efficiency increasing from 5.20% for conventional blade coating to 7.80% for MFMP. Moreover, the performance of mixed polymer ambipolar [poly(3-hexylthiophene-2,5-diyl) (P3HT):N2200] and semiconducting:insulating polymer unipolar (N2200:polystyrene) transistors is similarly enhanced, underscoring versatility for two-componentπ-polymer systems. Mixed-flow designs offer modalities for achieving high-performance organic optoelectronics via innovative printing methodologies.

     
    more » « less
  3. Abstract

    The nanoscale interpenetrating electron donor–acceptor network in organic bulk heterojunction (BHJ) solar cells results in efficient charge photogeneration but creates complex 3D pathways for charge transport. At present, little is known about the extent to which out‐of‐plane charge flow relies on lateral electrical connectivity. In this work, a procedure, based on conductive atomic force microscopy, is introduced to quantify lateral current spreading during out‐of‐plane charge transport. Using the developed approach, the dependence of lateral spreading on BHJ phase separation, composition, and molecule type (small molecule vs polymer) is studied. In the small‐molecule BHJ, 7,7′‐(4,4‐bis(2‐ethylhexyl)‐4H‐silolo[3,2‐b:4,5‐b′]dithiophene‐2,6‐diyl)bis(6‐fluoro‐4‐(5′‐hexyl‐[2,2′‐bithiophen]‐5‐yl)benzo[c]‐[1,2,5]thiadiazole):(6,6)‐Phenyl‐C71‐butyric acid methyl ester (p‐DTS(FBTTh2)2:PC71BM), an increase is observed in lateral hole current spreading as the population of donor crystallites, bearing an edge‐on molecular orientation, is increased. When integrated into BHJs, the polymer donor poly(3‐hexylthiophene‐2,5‐diyl) (P3HT) leads to greater lateral hole current spreading and more spatially uniform charge transport than the small‐molecule donor, owing to in‐plane charge transport along the polymer backbone. Through the newly introduced electrical characterization scheme, these experiments bring to light the role of lateral electrical connectivity in assisting charge navigation across BHJs.

     
    more » « less
  4.  
    more » « less
  5. Abstract

    While radiation is known to degrade AlGaN/GaN high-electron-mobility transistors (HEMTs), the question remains on the extent of damage governed by the presence of an electrical field in the device. In this study, we induced displacement damage in HEMTs in both ON and OFF states by irradiating with 2.8 MeV Au4+ion to fluence levels ranging from1.72×1010to3.745×1013ions cm−2, or 0.001–2 displacement per atom (dpa). Electrical measurement is donein situ, and high-resolution transmission electron microscopy (HRTEM), energy dispersive x-ray (EDX), geometrical phase analysis (GPA), and micro-Raman are performed on the highest fluence of Au4+irradiated devices. The selected heavy ion irradiation causes cascade damage in the passivation, AlGaN, and GaN layers and at all associated interfaces. After just 0.1 dpa, the current density in the ON-mode device deteriorates by two orders of magnitude, whereas the OFF-mode device totally ceases to operate. Moreover, six orders of magnitude increase in leakage current and loss of gate control over the 2-dimensional electron gas channel are observed. GPA and Raman analysis reveal strain relaxation after a 2 dpa damage level in devices. Significant defects and intermixing of atoms near AlGaN/GaN interfaces and GaN layer are found from HRTEM and EDX analyses, which can substantially alter device characteristics and result in complete failure.

     
    more » « less