Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Thermogels that exhibit a sol‐gel transition at body temperature represent a promising class of injectable biomaterials for biomedical applications. Thermogels reported thus far are generally composed of amphiphilic block copolymer micelles with an isotropic thermosensitive surface that induces intermicellar aggregation upon heating. Despite the promise, these hydrogels exhibit low mechanical strengths due to their uncontrollable aggregation resulting in void formation. To gain better control over intermicellar assembly, herein a novel thermogel design concept is presented based on patchy polymeric micelles bearing multiple thermosensitive surface domains. These domains serve as “patches” to bridge the micelles to form a percolated network structure. Patchy micelles are prepared from a binary mixture of amphiphilic block copolymers: Poly(N‐acryloylmorpholine)‐b‐poly(N‐benzylacrylamide) (PAM‐PBzAM) and poly (N‐isopropyl acrylamide)‐b‐poly(N‐benzylacrylamide) (PNIPAM‐PBzAM), where PBzAM, PAM and PNIPAM are the hydrophobic, hydrophilic and thermosensitive blocks, respectively. At 25 °C, the polymers self‐assembled into mixed shell micelles having a phase‐separated shell with PAM‐ and PNIPAM‐rich domains. At 37 °C, the PNIPAM domains undergo a hydrophilic‐to‐hydrophobic transition to induce intermicellar assembly into entangled worm‐like structures resulting in hydrogel formation. Patchy micelles form a homogeneous network structure without voids. The micelle design significantly affects the inter‐micellar assembly, the thermogelling behavior, and the mechanical properties of the hydrogels.more » « less
-
Abstract Hydrogen sulfide (H2S) is a gaseous signaling molecule in the human body and has attracted attention in cancer therapy due to its regulatory roles in cancer cell proliferation and migration. Accumulating evidence suggests that continuous delivery of H2S to cancer cells for extended periods of time suppresses cancer progression. However, one major challenge in therapeutic applications of H2S is its controlled delivery. To solve this problem, polymeric micelles are developed containing H2S donating‐anethole dithiolethione (ADT) groups, with H2S release profiles optimal for suppressing cancer cell proliferation. The micelles release H2S upon oxidation by reactive oxygens species (ROS) that are present inside the cells. The H2S release profiles can be controlled by changing the polymer design. Furthermore, the micelles that show a moderate H2S release rate exert the strongest anti‐proliferative effect in human colon cancer cells in in vitro assays as well as the chick chorioallantoic membrane cancer model, while the micelles do not affect proliferation of human umbilical vein endothelial cells. This study shows the importance of fine‐tuning H2S release profiles using a micelle approach for realizing the full therapeutic potential of H2S in cancer treatment.more » « less
-
Abstract Nature has evolved several elegant strategies to organize inert building blocks into adaptive supramolecular structures. Favored among these is interfacial self‐assembly, where the unique environment of liquid–liquid junctions provides structural, kinetic, thermodynamic, and chemical properties that are distinct from the bulk solution. Here, antithetical fluorous–water interfaces are exploited to guide the assembly of non‐canonical fluorinated amino acids into crystalline mechanomorphogenic films. That is, the nanoscale order imparted by this strategy yields self‐healing materials that can alter their macro‐morphology depending on exogenous mechanical stimuli. Additionally, like natural biomolecules, organofluorine amino acid films respond to changes in environmental ionic strength, pH, and temperature to adopt varied secondary and tertiary states. Complementary biophysical and biochemical studies are used to develop a model of amino acid packing to rationalize this bioresponsive behavior. Finally, these films show selective permeability, capturing fluorous compounds while allowing the free diffusion of water. These unique capabilities are leveraged in an exemplary application of the technology to extract perfluoroalkyl substances from contaminated water samples rapidly. Continued exploration of these materials will advance the understanding of how interface‐templated and fluorine‐driven assembly phenomenon a can be co‐utilized to design adaptive molecular networks and living matter.more » « less
-
Abstract High-resolution transmission electron microscopy (HRTEM) has been transformative to the field of polymer science, enabling the direct imaging of molecular structures. Although some materials have remarkable stability under electron beams, most HRTEM studies are limited by the electron dose the sample can handle. Beam damage of conjugated polymers is not yet fully understood, but it has been suggested that the diffusion of secondary reacting species may play a role. As such, we examine the effect of the addition of antioxidants to a series of solution-processable conjugated polymers as an approach to mitigating beam damage. Characterizing the effects of beam damage by calculating critical doseDCvalues from the decay of electron diffraction peaks shows that beam damage of conjugated polymers in the TEM can be minimized by using antioxidants at room temperature, even if the antioxidant does not alter or incorporate into polymer crystals. As a consequence, the addition of antioxidants pushes the resolution limit of polymer microscopy, enabling imaging of a 3.6 Å lattice spacing in poly[(5,6-difluoro-2,1,3-benzothiadiazol-4,7-diyl)-alt-(3,3″′-di(2-octyldodecyl)-2,2′;5′,2″;5″,2″′-quaterthiophene-5,5″′-diyl)] (PffBT4T-2OD).more » « less
-
Free, publicly-accessible full text available January 8, 2026
-
Recent advances in the water–energy landscape hinge upon our improved understanding of the complex morphology of materials involved in water treatment and energy production. Due to their versatility and tunability for applications ranging from drug delivery to fuel cells, polymeric systems will play a crucial role in shaping the future of water–energy nexus applications. Electron tomography (ET) stands as a transformative approach for elucidating the intricate structures inherent to polymers, offering unparalleled insights into their nanoscale architectures and functional properties in three dimensions. In particular, the various morphological and chemical characteristics of polymer membranes provide opportunities for perturbations to standard ET for the study of these systems. We discuss the applications of transmission electron microscopy in establishing structure–function relationships in polymeric membranes with an emphasis on traditional ET and cryogenic ET (cryo-ET). The synergy between ET and cryo-ET to unravel structural complexities and dynamic behaviors of polymer membranes holds immense potential in driving progress and innovation across frontiers related to water–energy nexus applications. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering , Volume 15 is June 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.more » « less
-
Biological membranes can achieve remarkably high permeabilities, while maintaining ideal selectivities, by relying on well-defined internal nanoscale structures in the form of membrane proteins. Here, we apply such design strategies to desalination membranes. A series of polyamide desalination membranes—which were synthesized in an industrial-scale manufacturing line and varied in processing conditions but retained similar chemical compositions—show increasing water permeability and active layer thickness with constant sodium chloride selectivity. Transmission electron microscopy measurements enabled us to determine nanoscale three-dimensional polyamide density maps and predict water permeability with zero adjustable parameters. Density fluctuations are detrimental to water transport, which makes systematic control over nanoscale polyamide inhomogeneity a key route to maximizing water permeability without sacrificing salt selectivity in desalination membranes.more » « less
An official website of the United States government
