skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Message Complexity of Population Protocols
The standard population protocol model assumes that when two agents interact, each observes the entire state of the other agent. We initiate the study of the message complexity for population protocols, where the state of an agent is divided into an externally-visible message and an internal component, where only the message can be observed by the other agent in an interaction. We consider the case of O(1) message complexity. When time is unrestricted, we obtain an exact characterization of the stably computable predicates based on the number of internal states s(n): If s(n) = o(n) then the protocol computes a semilinear predicate (unlike the original model, which can compute non-semilinear predicates with s(n) = O(log n)), and otherwise it computes a predicate decidable by a nondeterministic O(n log s(n))-space-bounded Turing machine. We then consider time complexity, introducing novel O(polylog(n)) expected time protocols for junta/leader election and general purpose broadcast correct with high probability, and approximate and exact population size counting correct with probability 1. Finally, we show that the main constraint on the power of bounded-message-size protocols is the size of the internal states: with unbounded internal states, any computable function can be computed with probability 1 in the limit by a protocol that uses only one-bit messages.  more » « less
Award ID(s):
1650596 1900931 1844976
PAR ID:
10209181
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Attiya, Hagit
Date Published:
Journal Name:
34th International Symposium on Distributed Computing, DISC 2020, October 12-16, 2020, Virtual Conference
Volume:
179
Page Range / eLocation ID:
6:1-6:18
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Population protocols are a popular model of distributed computing, in which randomly-interacting agents with little computational power cooperate to jointly perform computational tasks. Inspired by developments in molecular computation, and in particular DNA computing, recent algorithmic work has focused on the complexity of solving simple yet fundamental tasks in the population model, such as leader election (which requires convergence to a single agent in a special “leader” state), and majority (in which agents must converge to a decision as to which of two possible initial states had higher initial count). Known results point towards an inherent trade-off between the time complexity of such algorithms, and the space complexity, i.e. size of the memory available to each agent. In this paper, we explore this trade-off and provide new upper and lower bounds for majority and leader election. First, we prove a unified lower bound, which relates the space available per node with the time complexity achievable by a protocol: for instance, our result implies that any protocol solving either of these tasks for n agents using O(log log n) states must take Ω(n/polylogn) expected time. This is the first result to characterize time complexity for protocols which employ super-constant number of states per node, and proves that fast, poly-logarithmic running times require protocols to have relatively large space costs. On the positive side, we give algorithms showing that fast, poly-logarithmic convergence time can be achieved using O (log2 n) space per node, in the case of both tasks. Overall, our results highlight a time complexity separation between O (log log n) and Θ(log2 n) state space size for both majority and leader election in population protocols, and introduce new techniques, which should be applicable more broadly. 
    more » « less
  2. We give the first communication-optimal document exchange protocol. For any n and k 
    more » « less
  3. Alistarh, Dan (Ed.)
    Chemical reaction networks (CRNs) model systems where molecules interact according to a finite set of reactions such as A + B → C, representing that if a molecule of A and B collide, they disappear and a molecule of C is produced. CRNs can compute Boolean-valued predicates ϕ:ℕ^d → {0,1} and integer-valued functions f:ℕ^d → ℕ; for instance X₁ + X₂ → Y computes the function min(x₁,x₂), since starting with x_i copies of X_i, eventually min(x₁,x₂) copies of Y are produced. We study the computational power of execution bounded CRNs, in which only a finite number of reactions can occur from the initial configuration (e.g., ruling out reversible reactions such as A ⇌ B). The power and composability of such CRNs depend crucially on some other modeling choices that do not affect the computational power of CRNs with unbounded executions, namely whether an initial leader is present, and whether (for predicates) all species are required to "vote" for the Boolean output. If the CRN starts with an initial leader, and can allow only the leader to vote, then all semilinear predicates and functions can be stably computed in O(n log n) parallel time by execution bounded CRNs. However, if no initial leader is allowed, all species vote, and the CRN is "non-collapsing" (does not shrink from initially large to final O(1) size configurations), then execution bounded CRNs are severely limited, able to compute only eventually constant predicates. A key tool is a characterization of execution bounded CRNs as precisely those with a nonnegative linear potential function that is strictly decreased by every reaction [Czerner et al., 2024]. 
    more » « less
  4. James Aspnes and Othon Michail (Ed.)
    The population protocol model describes a network of anonymous agents that interact asynchronously in pairs chosen at random. Each agent starts in the same initial state s. We introduce the *dynamic size counting* problem: approximately counting the number of agents in the presence of an adversary who at any time can remove any number of agents or add any number of new agents in state s. A valid solution requires that after each addition/removal event, resulting in population size n, with high probability each agent "quickly" computes the same constant-factor estimate of the value log2n (how quickly is called the *convergence* time), which remains the output of every agent for as long as possible (the *holding* time). Since the adversary can remove agents, the holding time is necessarily finite: even after the adversary stops altering the population, it is impossible to *stabilize* to an output that never again changes. We first show that a protocol solves the dynamic size counting problem if and only if it solves the *loosely-stabilizing counting* problem: that of estimating logn in a *fixed-size* population, but where the adversary can initialize each agent in an arbitrary state, with the same convergence time and holding time. We then show a protocol solving the loosely-stabilizing counting problem with the following guarantees: if the population size is n, M is the largest initial estimate of logn, and s is the maximum integer initially stored in any field of the agents' memory, we have expected convergence time O(logn+logM), expected polynomial holding time, and expected memory usage of O(log2(s)+(loglogn)2) bits. Interpreted as a dynamic size counting protocol, when changing from population size nprev to nnext, the convergence time is O(lognnext+loglognprev). 
    more » « less
  5. This work concerns the general issue of combined optimality in terms of time and space complexity. In this context, we study the problem of counting resource-limited and passively mobile nodes in the model of population protocols, in which the space complexity is crucial. The counted nodes are memory-limited anonymous devices (called agents) communicating asynchronously in pairs (according to a fairness condition). Moreover, we assume that these agents are prone to failures so that they cannot be correctly initialized. This study considers two classical fairness conditions, and for each we investigate the issue of time optimality of (exact) counting given optimal space. First, with randomly interacting agents (probabilistic fairness), we present a ``non-guessing'' time optimal protocol of O(n log n) expected interactions given an optimal space of only one bit (for a population of size n). We prove the time optimality of such protocol. Then, under weak fairness (where every pair of agents interacts infinitely often), we show that a space optimal (semi-uniform) solution cannot converge faster than in Ω(2n) time, in terms of non-null transitions (i.e, the transitions that affect the states of the interacting agents). This result together with the time complexity analysis of an already known space optimal protocol shows that it is also optimal in time (given the optimal space constraints). 
    more » « less