skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1900931

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Understanding the algorithmic behaviors that are in principle realizable in a chemical system is necessary for a rigorous understanding of the design principles of biological regulatory networks. Further, advances in synthetic biology herald the time when we will be able to rationally engineer complex chemical systems and when idealized formal models will become blueprints for engineering. Coupled chemical interactions in a well-mixed solution are commonly formalized as chemical reaction networks (CRNs). However, despite the widespread use of CRNs in the natural sciences, the range of computational behaviors exhibited by CRNs is not well understood. Here, we study the following problem: What functions f : ℝ k → ℝ can be computed by a CRN, in which the CRN eventually produces the correct amount of the “output” molecule, no matter the rate at which reactions proceed? This captures a previously unexplored but very natural class of computations: For example, the reaction X 1 + X 2 → Y can be thought to compute the function y = min ( x 1 , x 2 ). Such a CRN is robust in the sense that it is correct whether its evolution is governed by the standard model of mass-action kinetics, alternatives such as Hill-function or Michaelis-Menten kinetics, or other arbitrary models of chemistry that respect the (fundamentally digital) stoichiometric constraints (what are the reactants and products?). We develop a reachability relation based on a broad notion of “what could happen” if reaction rates can vary arbitrarily over time. Using reachability, we define stable computation analogously to probability 1 computation in distributed computing and connect it with a seemingly stronger notion of rate-independent computation based on convergence in the limit t → ∞ under a wide class of generalized rate laws. Besides the direct mapping of a concentration to a nonnegative analog value, we also consider the “dual-rail representation” that can represent negative values as the difference of two concentrations and allows the composition of CRN modules. We prove that a function is rate-independently computable if and only if it is piecewise linear (with rational coefficients) and continuous (dual-rail representation), or non-negative with discontinuities occurring only when some inputs switch from zero to positive (direct representation). The many contexts where continuous piecewise linear functions are powerful targets for implementation, combined with the systematic construction we develop for computing these functions, demonstrate the potential of rate-independent chemical computation. 
    more » « less
  2. James Aspnes and Othon Michail (Ed.)
    SIMD||DNA [Wang et al., 2019] is a model of DNA strand displacement allowing parallel in-memory computation on DNA storage. We show how to simulate an arbitrary 3-symbol space-bounded Turing machine with a SIMD||DNA program, giving a more direct and efficient route to general-purpose information manipulation on DNA storage than the Rule 110 simulation of Wang, Chalk, and Soloveichik [Wang et al., 2019]. We also develop software (https://github.com/UC-Davis-molecular-computing/simd-dna) that can simulate SIMD||DNA programs and produce SVG figures. 
    more » « less
  3. James Aspnes and Othon Michail (Ed.)
    The population protocol model describes a network of anonymous agents that interact asynchronously in pairs chosen at random. Each agent starts in the same initial state s. We introduce the *dynamic size counting* problem: approximately counting the number of agents in the presence of an adversary who at any time can remove any number of agents or add any number of new agents in state s. A valid solution requires that after each addition/removal event, resulting in population size n, with high probability each agent "quickly" computes the same constant-factor estimate of the value log2n (how quickly is called the *convergence* time), which remains the output of every agent for as long as possible (the *holding* time). Since the adversary can remove agents, the holding time is necessarily finite: even after the adversary stops altering the population, it is impossible to *stabilize* to an output that never again changes. We first show that a protocol solves the dynamic size counting problem if and only if it solves the *loosely-stabilizing counting* problem: that of estimating logn in a *fixed-size* population, but where the adversary can initialize each agent in an arbitrary state, with the same convergence time and holding time. We then show a protocol solving the loosely-stabilizing counting problem with the following guarantees: if the population size is n, M is the largest initial estimate of logn, and s is the maximum integer initially stored in any field of the agents' memory, we have expected convergence time O(logn+logM), expected polynomial holding time, and expected memory usage of O(log2(s)+(loglogn)2) bits. Interpreted as a dynamic size counting protocol, when changing from population size nprev to nnext, the convergence time is O(lognnext+loglognprev). 
    more » « less
  4. Attiya, Hagit (Ed.)
    The standard population protocol model assumes that when two agents interact, each observes the entire state of the other agent. We initiate the study of the message complexity for population protocols, where the state of an agent is divided into an externally-visible message and an internal component, where only the message can be observed by the other agent in an interaction. We consider the case of O(1) message complexity. When time is unrestricted, we obtain an exact characterization of the stably computable predicates based on the number of internal states s(n): If s(n) = o(n) then the protocol computes a semilinear predicate (unlike the original model, which can compute non-semilinear predicates with s(n) = O(log n)), and otherwise it computes a predicate decidable by a nondeterministic O(n log s(n))-space-bounded Turing machine. We then consider time complexity, introducing novel O(polylog(n)) expected time protocols for junta/leader election and general purpose broadcast correct with high probability, and approximate and exact population size counting correct with probability 1. Finally, we show that the main constraint on the power of bounded-message-size protocols is the size of the internal states: with unbounded internal states, any computable function can be computed with probability 1 in the limit by a protocol that uses only one-bit messages. 
    more » « less