skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evaluation of Clustering Techniques for GPS Phenotyping Using Mobile Sensor Data
With the ubiquitousness of mobile smart phones, health researchers are increasingly interested in leveraging these commonplace devices as data collection instruments for near real-time data to aid in remote monitoring, and to support analysis and detection of patterns associated with a variety of health-related outcomes. As such, this work focuses on the analysis of GPS data collected through an open-source mobile platform over two months in support of a larger study being undertaken to develop a digital phenotype for pregnancy using smart phone data. An exploration of a variety of off-the-shelf clustering methods was completed to assess accuracy and runtime performance for a modest time-series of 292K non-uniform samples on the Stampede2 system at TACC. Motivated by phenotyping needs to not-only assess the physical coordinates of GPS clusters, but also the accumulated time spent at high-interest locations, two additional approaches were implemented to facilitate cluster time accumulation using a pre-processing step that was also crucial in improving clustering accuracy and scalability.  more » « less
Award ID(s):
1838901
PAR ID:
10209199
Author(s) / Creator(s):
;
Date Published:
Journal Name:
PEARC '20: Practice and Experience in Advanced Research Computing
Page Range / eLocation ID:
364–371
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Emergency response, navigation, and evacuation are key essentials for effective rescue and safety management. Situational awareness is a key ingredient when fire responders or emergency response personnel responds to an emergency. They have to quickly assess the layout of a building or a campus upon entry. Moreover, the occupants of a building or campus also need situational awareness for navigation and emergency response. We have developed an integrated situational awareness mobile augmented reality (AR) application for smart campus planning, management, and emergency response. Through the visualization of integrated geographic information systems and real-time data analysis, our mobile application provides insights into operational implications and offers information to support effective decision-making. Using existing building features, the authors demonstrate how the mobile AR application provides contextualized 3D visualizations that promote and support spatial knowledge acquisition and cognitive mapping thereby enhancing situational awareness. A limited user study was conducted to test the effectiveness of the proposed mobile AR application using the mobile phone usability questionnaire (MPUQ) framework. The results show that the mobile AR application was relatively easy to use and that it can be considered a useful application for navigation and evacuation. 
    more » « less
  2. The rapid growth of GPS technology and mobile devices has led to a massive accumulation of location data, bringing considerable benefits to individuals and society. One of the major usages of such data is travel time prediction, a typical service provided by GPS navigation devices and apps. Meanwhile, the constant collection and analysis of the individual location data also pose unprecedented privacy threats. We leverage the notion of geo-indistinguishability, an extension of differential privacy to the location privacy setting, and propose a procedure for privacy-preserving travel time prediction without collecting actual individual GPS trace data. We propose new concepts to examine the impact of the geo-indistinguishability sanitization on the usefulness of GPS traces and provide analytical and experimental utility analysis for privacy-preserving travel time prediction. We also propose new metrics to measure the adversary error in learning individual GPS traces from the collected sanitized data. Our experiment results suggest that the proposed procedure provides travel time analysis with satisfactory accuracy at reasonably small privacy costs. 
    more » « less
  3. This paper presents a computational framework for modeling biobehavioral rhythms - the repeating cycles of physiological, psychological, social, and environmental events - from mobile and wearable data streams. The framework incorporates four main components: mobile data processing, rhythm discovery, rhythm modeling, and machine learning. We evaluate the framework with two case studies using datasets of smartphone, Fitbit, and OURA smart ring to evaluate the framework’s ability to (1) detect cyclic biobehavior, (2) model commonality and differences in rhythms of human participants in the sample datasets, and (3) predict their health and readiness status using models of biobehavioral rhythms. Our evaluation demonstrates the framework’s ability to generate new knowledge and findings through rigorous micro- and macro-level modeling of human rhythms from mobile and wearable data streams collected in the wild and using them to assess and predict different life and health outcomes. 
    more » « less
  4. This paper presents the first computational framework for modeling biobehavioral rhythms - the repeating cycles of physiological, psychological, social, and environmental events - from mobile and wearable data streams. The framework incorporates four main components: mobile data processing, rhythm discovery, rhythm modeling, and machine learning. We evaluate the framework with two case studies using datasets of smartphones, Fitbit, and OURA smart ring to evaluate the framework's ability to 1) detect cyclic biobehavioral, 2) model commonality and differences in rhythms of human participants in the sample datasets, and 3) predict their health and readiness status using models of biobehavioral rhythms. Our evaluation demonstrates the framework's ability to generate new knowledge and findings through rigorous micro-and macro-level modeling of human rhythms from mobile and wearable data streams collected in the wild and using them to assess and predict different life and health outcomes. 
    more » « less
  5. In the IoT and smart systems era, the massive amount of data generated from various IoT and smart devices are often sent directly to the cloud infrastructure for processing, analyzing, and storing. While handling this big data, conventional cloud infrastructure encounters many challenges, e.g., scarce bandwidth, high latency, real-time constraints, high power, and privacy issues. The edge-centric computing is transpiring as a synergistic solution to address these issues of cloud computing, by enabling processing/analyzing the data closer to the source of the data or at the network’s edge. This in turn allows real-time and in-situ data analytics and processing, which is imperative for many real-world IoT and smart systems, such as smart cars. Since the edge computing is still in its infancy, innovative solutions, models, and techniques are needed to support real-time and in-situ data processing and analysis of edge computing platforms. In this research work, we introduce a novel, unique, and efficient FPGA-HLS-based hardware accelerator for PCA+SVM model for real-time processing and analysis on edge computing platforms. This is inspired by our previous work on PCA+SVM models for edge computing applications. It was demonstrated that the amalgamation of principal component analysis (PCA) and support vector machines (SVM) leads to high classification accuracy in many fields. Also, machine learning techniques, such as SVM, can be utilized for many edge tasks, e.g. anomaly detection, health monitoring, etc.; and dimensionality reduction techniques, such as PCA, are often used to reduce the data size, which in turn vital for memory-constrained edge devices/platforms. Furthermore, our previous works demonstrated that FPGA’s many traits, including parallel processing abilities, low latency, and stable throughput despite the workload, make FPGAs suitable for real-time processing of edge computing applications/platforms. Our proposed FPGA-HLS-based PCA+SVM hardware IP achieves up to 254x speedup compared to its embedded software counterpart, while maintaining small area and low power requirements of edge computing applications. Our experimental results show great potential in utilizing FPGA-based architectures to support real-time processing on edge computing applications. 
    more » « less