The emergence of mobile apps (e.g., location-based services, geo-social networks, ride-sharing) led to the collection of vast amounts of trajectory data that greatly benefit the understanding of individual mobility. One problem of particular interest is next-location prediction, which facilitates location-based advertising, point-of-interest recommendation, traffic optimization,etc. However, using individual trajectories to build prediction models introduces serious privacy concerns, since exact whereabouts of users can disclose sensitive information such as their health status or lifestyle choices. Several research efforts focused on privacy-preserving next-location prediction, but they have serious limitations: some use outdated privacy models (e.g., k-anonymity), while others employ learning models withmore »
Privacy-preserving Travel Time Prediction with Uncertainty Using GPS Trace Data
The rapid growth of GPS technology and mobile devices has led to a massive accumulation of location data, bringing considerable benefits to individuals and society. One of the major usages of such data is travel time prediction, a typical service provided by GPS navigation devices and apps. Meanwhile, the constant collection and analysis of the individual location data also pose unprecedented privacy threats. We leverage the notion of geo-indistinguishability, an extension of differential privacy to the location privacy setting, and propose a procedure for privacy-preserving travel time prediction without collecting actual individual GPS trace data. We propose new concepts to examine the impact of the geo-indistinguishability sanitization on the usefulness of GPS traces and provide analytical and experimental utility analysis for privacy-preserving travel time prediction. We also propose new metrics to measure the adversary error in learning individual GPS traces from the collected sanitized data. Our experiment results suggest that the proposed procedure provides travel time analysis with satisfactory accuracy at reasonably small privacy costs.
- Award ID(s):
- 1717417
- Publication Date:
- NSF-PAR ID:
- 10311800
- Journal Name:
- IEEE Transactions on Mobile Computing
- ISSN:
- 1536-1233
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The emergence of mobile apps (e.g., location-based services,geo-social networks, ride-sharing) led to the collection of vast amounts of trajectory data that greatly benefit the understanding of individual mobility. One problem of particular interest is next-location prediction, which facilitates location-based advertising, point-of-interest recommendation, traffic optimization,etc. However, using individual trajectories to build prediction models introduces serious privacy concerns, since exact whereabouts of users can disclose sensitive information such as their health status or lifestyle choices. Several research efforts focused on privacy-preserving next-location prediction, but they have serious limitations: some use outdated privacy models (e.g., k-anonymity), while others employ learning models with limitedmore »
-
Location information is critical to a wide variety of navigation and tracking applications. GPS, today's de-facto outdoor localization system has been shown to be vulnerable to signal spoofing attacks. Inertial Navigation Systems (INS) are emerging as a popular complementary system, especially in road transportation systems as they enable improved navigation and tracking as well as offer resilience to wireless signals spoofing and jamming attacks. In this paper, we evaluate the security guarantees of INS-aided GPS tracking and navigation for road transportation systems. We consider an adversary required to travel from a source location to a destination and monitored by anmore »
-
Abstract Background Personal privacy is a significant concern in the era of big data. In the field of health geography, personal health data are collected with geographic location information which may increase disclosure risk and threaten personal geoprivacy. Geomasking is used to protect individuals’ geoprivacy by masking the geographic location information, and spatial k-anonymity is widely used to measure the disclosure risk after geomasking is applied. With the emergence of individual GPS trajectory datasets that contains large volumes of confidential geospatial information, disclosure risk can no longer be comprehensively assessed by the spatial k-anonymity method. Methods This study proposes andmore »
-
Abstract We present the design, implementation and evaluation of a system, called MATRIX, developed to protect the privacy of mobile device users from location inference and sensor side-channel attacks. MATRIX gives users control and visibility over location and sensor (e.g., Accelerometers and Gyroscopes) accesses by mobile apps. It implements a PrivoScope service that audits all location and sensor accesses by apps on the device and generates real-time notifications and graphs for visualizing these accesses; and a Synthetic Location service to enable users to provide obfuscated or synthetic location trajectories or sensor traces to apps they find useful, but do notmore »