skip to main content


Title: Relationship between individual chamber and whole shell Mg/Ca ratios in Trilobatus sacculifer and implications for individual foraminifera palaeoceanographic reconstructions
Abstract

Precisely targeted measurements of trace elements using laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) reveal inter-chamber heterogeneities in specimens of the planktic foraminiferTrilobatus (Globigerinoides) sacculifer. We find that Mg/Ca ratios in the final growth chamber are generally lower compared to previous growth chambers, but final chamber Mg/Ca is elevated in one of thirteen sample intervals. Differences in distributions of Mg/Ca values from separate growth chambers are observed, occurring most often at lower Mg/Ca values, suggesting that single-chamber measurements may not be reflective of the specimen’s integrated Mg/Ca. We compared LA-ICPMS Mg/Ca values to paired, same-individual Mg/Ca measured via inductively coupled plasma optical emission spectrometry (ICP-OES) to assess their correspondence. Paired LA-ICPMS and ICP-OES Mg/Ca show a maximum correlation coefficient of R = 0.92 (p < 0.05) achieved by applying a weighted average of the last and penultimate growth chambers. Population distributions of paired Mg/Ca values are identical under this weighting. These findings demonstrate that multi-chamber LA-ICPMS measurements can approximate entire specimen Mg/Ca, and is thus representative of the integrated conditions experienced during the specimen’s lifespan. This correspondence between LA-ICPMS and ICP-OES data links these methods and demonstrates that both generate Mg/Ca values suitable for individual foraminifera palaeoceanographic reconstructions.

 
more » « less
PAR ID:
10209431
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
11
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. To use planktic foraminiferal tests as paleoproxy substrates, it is necessary to delineate environmental versus biological controls on trace element incorporation. Here we utilize laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to explore interspecies, chamber-to-chamber, and intratest trace element (i.e., Mg, Na, Sr, Ba, Mn, Zn) variability in thickly-calcified specimens of the polar and subpolar planktic foraminifera Neogloboquadrina incompta, N. pachyderma, and Turborotalita quinqueloba collected from plankton tows in the Northern California Current. Among the study taxa, test Mg/Ca, Na/Ca, and Sr/Ca are likely dominantly controlled by depth habitat. The neogloboquadrinids record higher Ba/Ca and Mn/Ca, and also show positive covariance between these elements, possibly due to calcifying in an oxygen-depleted marine snow microhabitat. Trace elements are found to be more enriched in the lamellar calcite than the outer chamber wall dominated by gametogenic crust. The data presented herein provide insight into potential vital effects, paleoproxy considerations, ontogeny, and biomineralization processes. 
    more » « less
  2. We report interlaboratory comparisons of a methodology to measure and calculate concentrations of impurities in ice core samples using the Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) system developed at the W. M. Keck Laser Ice Facility at the Climate Change Institute, University of Maine (UMaine). Here, we will summarize results of measured artificial samples with known levels of Ca, Al, Fe, Mg, Na, Cu, Pb. We adapted a method for LA-ICP-MS analysis of the frozen standard that was developed in the laboratory at Ca’ Foscari University of Venice, and we tested its applicability to the UMaine system. This work will help to measure and interpret very old and highly compressed ice core records from the Allan Hills Blue Ice Area, Antarctica, sampled with different analytical tools. 
    more » « less
  3. Abstract Despite being a prominent continental-scale feature, the late Mesoproterozoic North American Midcontinent Rift did not result in the break-up of Laurentia, and subsequently underwent structural inversion. The timing of inversion is critical for constraining far-field effects of orogenesis and processes associated with the rift's failure. The Keweenaw fault in northern Michigan (USA) is a major thrust structure associated with rift inversion; it places ca. 1093 Ma rift volcanic rocks atop the post-rift Jacobsville Formation, which is folded in its footwall. Previous detrital zircon (DZ) U-Pb geochronology conducted by laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) assigned a ca. 950 Ma maximum age to the Jacobsville Formation and led researchers to interpret its deposition and deformation as postdating the ca. 1090–980 Ma Grenvillian Orogeny. In this study, we reproduced similar DZ dates using LA-ICP-MS and then dated 19 of the youngest DZ grains using high-precision chemical abrasion–isotope dilution–thermal ionization mass spectrometry (CA-ID-TIMS). The youngest DZ dated by CA-ID-TIMS at 992.51 ± 0.64 Ma (2σ) redefines the maximum depositional age of the Jacobsville Formation and overlaps with a U-Pb LA-ICP-MS date of 985.5 ± 35.8 Ma (2σ) for late-kinematic calcite veins within the brecciated Keweenaw fault zone. Collectively, these data are interpreted to constrain deposition of the Jacobsville Formation and final rift inversion to have occurred during the 1010–980 Ma Rigolet Phase of the Grenvillian Orogeny, following an earlier phase of Ottawan inversion. Far-field deformation propagated >500 km into the continental interior during the Ottawan and Rigolet phases of the Grenvillian Orogeny. 
    more » « less
  4. Abstract

    Sr‐U, a coral‐based paleothermometer, corrects for the effects of Rayleigh Fractionation on Sr/Ca by regressing multiple, paired U/Ca and Sr/Ca values. Prior applications of Sr‐U captured mean annual sea surface temperatures (SSTs), inter‐annual variability, and long‐term trends. However, because many Sr/Ca‐U/Ca pairs are needed for a single Sr‐U value as originally formulated, the temporal resolution of the proxy is typically limited to 1 year. Here, we address this limitation by applying laser ablation inductively coupled plasma mass spectrometry (LA‐ICPMS) to threePoritescolonies from Jarvis and Nikumaroro Islands in the central equatorial Pacific (CEP), generating ∼25 Sr/Ca‐U/Ca pairs per month of skeletal growth. Both Sr/Ca and U/Ca vary significantly over small (sub‐mm) length scales and support the calculation of Sr‐U values using the original regression method. Over the represented temperature range of 24–31°C, the Sr/Ca‐U/Ca‐SST relationships are nonlinear, a finding consistent with predictions of the Rayleigh model. To reflect this non‐linearity, we developed a calibration using multivariate nonlinear regression. The multivariate, three‐coral calibration was applied to 20 years of monthly resolved Sr/Ca and U/Ca of a coral interval not included in the calibration, yielding RMSE = 0.73°C andr2 = 0.85 (p < 0.05;df = 256). The multivariate calibration performed significantly better than Sr/Ca alone (r2 = 0.28). Applying the new calibration to a subfossilPoritesfrom Kiritimati Atoll, CEP (2200 Before Present) yields equivalent phase and amplitude of interannual variability, but water temperatures ∼1.6°C cooler than they are in this region today.

     
    more » « less
  5. LaserTRAM-DB is a dashboard for the complete processing pipeline of Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) data in complex materials such as geologic samples. As LA-ICP- MS data in geologic samples frequently have multiple phases, inclusions, and other compositional complexities within them that do not represent the material of interest, user interaction is required to filter unwanted signals out of the overall ablation signal. LaserTRAM-DB allows the user to filter which portion of the ablation peak is utilized in calculating concentrations, subsequently allowing for more accurate data to be obtained. Furthermore, it allows for the processing of both individual spot analysis data and a line of spots gathered in rapid succession, reducing the time required for data reduction while preserving spatial definition and still ensuring data quality. 
    more » « less