skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 31, 2025

Title: Intratest trace element variability in polar and subpolar planktic foraminifera: Insights into vital effects, ontogeny, and biomineralization processes
To use planktic foraminiferal tests as paleoproxy substrates, it is necessary to delineate environmental versus biological controls on trace element incorporation. Here we utilize laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to explore interspecies, chamber-to-chamber, and intratest trace element (i.e., Mg, Na, Sr, Ba, Mn, Zn) variability in thickly-calcified specimens of the polar and subpolar planktic foraminifera Neogloboquadrina incompta, N. pachyderma, and Turborotalita quinqueloba collected from plankton tows in the Northern California Current. Among the study taxa, test Mg/Ca, Na/Ca, and Sr/Ca are likely dominantly controlled by depth habitat. The neogloboquadrinids record higher Ba/Ca and Mn/Ca, and also show positive covariance between these elements, possibly due to calcifying in an oxygen-depleted marine snow microhabitat. Trace elements are found to be more enriched in the lamellar calcite than the outer chamber wall dominated by gametogenic crust. The data presented herein provide insight into potential vital effects, paleoproxy considerations, ontogeny, and biomineralization processes.  more » « less
Award ID(s):
2306057
PAR ID:
10534556
Author(s) / Creator(s):
;
Publisher / Repository:
Cushman Foundation for Foraminiferal Research
Date Published:
Journal Name:
Journal of foraminiferal research
ISSN:
0096-1191
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The trace element composition of planktic foraminifera shells is influenced by both environmental and biological factors (‘vital effects’). As trace elements in individual foraminifera shells are increasingly used as paleoceanographic tools, understanding how trace element ratios vary between individuals, among species, and in response to high frequency environmental variability is of critical importance. Here, we present a three-year plankton tow record (2010–2012) of individual shell trace element (Mg, Sr, Ba, and Mn) to Ca ratios in the planktic species Globigerina ruber (pink), Orbulina universa, and Globorotalia menardii collected throughout the upper 100 m of Cariaco Basin. Plankton tows were paired with in situ measurements of water column chemistry and hydrography. The Mg/Ca ratio reflects different calcification temperatures in all three species when calculated using species-specific temperature relationships from single-species averages of Mg/Ca. However, individual shell Mg/Ca often results in unrealistic temperate estimates. The Sr/Ca ratios are relatively constant among the four species. Ratios of Mn/Ca and Ba/Ca are highest in G. menardii and are not reflective of elemental concentrations in open waters. The Mn/Ca ratio is elevated in all species during upwelling conditions, and a similar trend is demonstrated in Neogloboquadrina incompta shells from the California margin collected during upwelling periods. Together this suggests that elevated shell Mn/Ca may act as a tracer for upwelling of deeper water masses. Our results emphasize the large degree of trace element variability present among and within species living within a limited depth habitat and the roles of biology, calcification environment, and physical mixing in mediating how trace element geochemistry reflects environmental variability in the surface ocean. 
    more » « less
  2. Planktic foraminiferal-based trace element-calcium ratios (TE/Ca) are a cornerstone in paleoceanographic reconstructions. While TE-environment calibrations are often established through culturing experiments, shell growth in culture is not always consistent with growth in a natural setting. For example, many species of planktic foraminifera thicken their shell at the end of their life cycle, producing a distinct “gametogenic” crust. Crust is common in fossil foraminifers, however, shells grown in culture do not often develop a thick crust. Here, we investigate potential vital effects associated with the crusting process by comparing the trace element (Mg/Ca, Na/Ca, Ba/Ca, Sr/Ca, Mn/Ca, Zn/Ca) and stable isotope (δ13C, δ18O) composition of alive, fully mature, uncrusted shells to recently deceased, crusted shells of Neogloboquadrina pachyderma collected from the same plankton tows off the Oregon (USA) coast. We find that uncrusted (N = 55) shells yield significantly higher Ba/Ca, Na/Ca, Mn/Ca, and Sr/Ca than crusted (N = 66) shells, and crust calcite records significantly lower TE/Ca values for all elements examined. Isotopic mixing models suggest that the crust calcite accounts for ∼40%–70% of crusted shell volume. Comparison of foraminiferal and seawater isotopes indicate that N. pachyderma lives in the upper 90 m of the water column, and that crust formation occurs slightly deeper than their average living depth habitat. Results highlight the necessity to establish calibrations from crusted shells, as application of calibrations from TE-enriched uncrusted shells may yield attenuated or misleading paleoceanographic reconstructions. 
    more » « less
  3. Oxygen limited marine environments, such as oxygen minimum zones, are of profound importance for global nutrient cycling and vertical habitat availability. While it is understood that the extent and intensity of oxygen minimum zones are responsive to climate, the limited suite of viable proxies for low oxygen pelagic environments continues to pose a real barrier for paleoclimate interpretations. Here we investigate the proxy potential of an array of trace element (Mg, Mn, Zn, and Sr) to Ca ratios from the shells of Globorotaloides hexagonus , a planktic foraminifer endemic to tropical through temperate oxygen minimum zones. A species-specific relationship between Mg/Ca and temperature is proposed for quantitative reconstruction of oxygen minimum zone paleotemperatures. Both Mn/Ca and Zn/Ca ratios vary with oxygen concentration and could be useful for reconstructing G. hexagonus habitat where the primary signal can be d\istinguished from diagenetic overprinting. Finally, a robust correlation between Sr/Ca ratios and dissolved oxygen demonstrates a role for Sr as an indicator of oxygen minimum zone intensity, potentially via foraminiferal growth rate. The analysis of these relatively conventional trace element ratios in the shells of an oxygen minimum zone species has tremendous potential to facilitate multiproxy reconstructions from this enigmatic environment. 
    more » « less
  4. Brenner, L (Ed.)
    The geochemistry of marine carbonates frequently reflects the environmental factors that influence their growth, such as climate and/or water quality. Barnacles are sessile crustaceans with shells that provide such environmental archiving. The bay barnacle, Amphibalanus improvisus, was found in the Hudson River at Piermont, NY and Nyack, NY and was the most abundant species identified. To expand the geographic perspective, Amphibalanus eburneus and Semibalanus balanoides barnacles were collected in Rye, NY on the Long Island Sound coast. However, this did not permit a perfect comparison as these species were not identified at the Hudson River sites. Barnacle samples were cleaned and organic matter removed with a multi-step process that included a vinegar scrub, short bleach bath, and ultrasonication in milli-Q water. Trace metals in calcium carbonate barnacle shells were analyzed via quadrupole mass spectrometer. The analysis focuses on Mg, Sr, Ba, Na, and Y to Ca ratios. There was geographic variation in barnacle Y/Ca, Ba/Ca, and Na/Ca values. This may indicate that the concentrations of these trace metals in the waters of the three places do vary, suggesting there could be potential to explore these measurements as an environmental proxy. The Mg/Ca and Sr/Ca inter-site variability was more difficult to quantify. Although Mg/Ca and Sr/Ca are known paleothermometers in other archives, more work needs to be done to determine their efficacy in these locations. Ultimately, this preliminary data and assessment shows that these metals can be recorded in barnacle shells and opens the door to future environmental- or climate-proxy development in the Hudson River and Long Island Sound. 
    more » « less
  5. In the southwestern United States, California (CA) is one of the most climatically sensitive regions given its low (≤250 mm/year) seasonal precipitation and its inherently variable hydroclimate, subject to large magnitude modulation. To reconstruct past climate change in CA, cave calcite deposits (stalagmites) have been utilized as an archive for environmentally sensitive proxies, such as stable isotope compositions (δ18O, δ13C) and trace element concentrations (e.g., Mg, Ba, Sr). Monitoring the cave and associated surface environments, the chemical evolution of cave drip-water, the calcite precipitated from the drip-water, and the response of these systems to seasonal variability in precipitation and temperature is imperative for interpreting stalagmite proxies. Here we present monitored drip-water and physical parameters at Lilburn Cave, Sequoia Kings Canyon National Park (Southern Sierra Nevada), CA, and measured trace element concentrations (Mg, Sr, Ba, Cu, Fe, Mn) and stable isotopic compositions (δ18O, δ2H) of drip-water and for calcite (δ18O) precipitated on glass substrates over a two-year period (November 2018 to February 2021) to better understand how chemical variability at this site is influenced by local and regional precipitation and temperature variability. Despite large variability in surface temperatures and precipitation amount and source region (North Pacific vs. subtropical Pacific), Lilburn Cave exhibits a constant cave environment year-round. At two of the three sites within the cave, drip-water δ18O and δ2H are influenced seasonally by evaporative enrichment. At a third collection site in the cave, the drip-water δ18O responds solely to precipitation δ18O variability. The Mg/Ca, Ba/Ca, and Sr/Ca ratios are seasonally responsive to prior calcite precipitation at all sites but minimally to water-rock interaction. Lastly, we examine the potential of trace metals (e.g., Mn2+and Cu2+as a geochemical proxy of recharge and find that variability in their concentrations has high potential to denote the onset of the rainy season in the study region. The drip-water composition is recorded in the calcite, demonstrating that stalagmites from Lilburn Cave, and potentially more regionally, could record seasonal variability in weather even during periods of substantially reduced rainfall. 
    more » « less