A sustainable transportation future is one in which people eschew personal car ownership in favor of using autonomous vehicle (AV)-based ridehailing services in a shared mode. However, the traveling public has historically shown a disinclination toward sharing rides and carpooling with strangers. In a future of AV-based ridehailing services, it will be necessary for people to embrace both AVs as well as true ridesharing to fully realize the benefits of automated and shared mobility technologies. This study investigated the factors influencing willingness to use AV-based ridehailing services in the future in a shared mode (i.e., with strangers). This was done through the estimation of a behavioral model system on a comprehensive survey data set that included rich information about attitudes, perceptions, and preferences pertaining to the adoption of AVs and shared mobility modes. The model results showed that current ridehailing experiences strongly influenced the likelihood of being willing to ride AV-based services in a shared mode. Campaigns that provide opportunities for individuals to experience such services firsthand would potentially go a long way to enabling a shared mobility future at scale. In addition, several attitudinal variables were found to strongly influence the adoption of future mobility services; these findings provide insights on the likely early adopters of shared autonomous mobility services and the types of educational awareness campaigns that may effect change in the prospects of such services.
On the Co-Design of AV-Enabled Mobility Systems
The design of autonomous vehicles (AVs) and the design of AV-enabled mobility systems are closely coupled. Indeed, knowledge about the intended service of AVs would impact their design and deployment process, whilst insights about their technological development could significantly affect transportation management decisions. This calls for tools to study such a coupling and co-design AVs and AV-enabled mobility systems in terms of different objectives. In this paper, we instantiate a framework to address such co-design problems. In particular, we leverage the recently developed theory of co-design to frame and solve the problem of designing and deploying an intermodal Autonomous Mobility-on-Demand system, whereby AVs service travel demands jointly with public transit, in terms of fleet sizing, vehicle autonomy, and public transit service frequency. Our framework is modular and compositional, allowing one to describe the design problem as the interconnection of its individual components and to tackle it from a system-level perspective. To showcase our methodology, we present a real-world case study for Washington D.C., USA. Our work suggests that it is possible to create user-friendly optimization tools to systematically assess costs and benefits of interventions, and that such analytical techniques might gain a momentous role in policy-making in the future.
more »
« less
- Award ID(s):
- 1454737
- PAR ID:
- 10209480
- Date Published:
- Journal Name:
- IEEE International Conference on Intelligent Transportation Systems
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Pilot projects have emerged in cities globally as a way to experiment with the utilization of a suite of smart mobility and emerging transportation technologies. Automated vehicles (AVs) have become central tools for such projects as city governments and industry explore the use and impact of this emerging technology. This paper presents a large-scale assessment of AV pilot projects in U.S. cities to understand how pilot projects are being used to examine the risks and benefits of AVs, how cities integrate these potentially transformative technologies into conventional policy and planning, and how and what they are learning about this technology and its future opportunities and risks. Through interviews with planning practitioners and document analysis, we demonstrate that the approaches cities take for AVs differ significantly, and often lack coherent policy goals. Key findings from this research include: (1) a disconnect between the goals of the pilot projects and a city’s transportation goals; (2) cities generally lack a long-term vision for how AVs fit into future mobility systems and how they might help address transportation goals; (3) an overemphasis of non-transportation benefits of AV pilots projects; (4) AV pilot projects exhibit a lack of policy learning and iteration; and (5) cities are not leveraging pilot projects for public benefits. Overall, urban and transportation planners and decision makers show a clear interest to discover how AVs can be used to address transportation challenges in their communities, but our research shows that while AV pilot projects purport to do this, while having numerous outcomes, they have limited value for informing transportation policy and planning questions around AVs. We also find that AV pilot projects, as presently structured, may constrain planners’ ability to re-think transportation systems within the context of rapid technological change.more » « less
-
Autonomous vehicles (AVs) are closer to becoming a reality in changing the landscape of commercial and personal transportation. The launch of these vehicles come with the promise of improved road safety, reduced traffic fatalities, and enhanced mobility. However, there are questions as to whether the design of AVs will meet the needs of everyone, including people with disabilities and older adults. We argue that there exists no conceptual model that guide sthe inclusive design of autonomous vehicles to benefit all intended users. This paper proposes such a model, called the User Transportation-Activity Technology (UTT) model, which supports the inclusive design of AVs. We present a review of current models of assistive technology design and their drawbacks followed by an introduction of the UTT model and its application in AV design. This paper may benefit researchers, designers, and developers of autonomous vehicles interested in addressing accessible design issues in such vehicles.more » « less
-
Self-driving cars, or Autonomous Vehicles (AVs), are increasingly becoming an integral part of our daily life. About 50 corporations are actively working on AVs, including large companies such as Google, Ford, and Intel. Some AVs are already operating on public roads, with at least one unfortunate fatality recently on record. As a result, understanding bugs in AVs is critical for ensuring their security, safety, robustness, and correctness. While previous studies have focused on a variety of domains (e.g., numerical software; machine learning; and error-handling, concurrency, and performance bugs) to investigate bug characteristics, AVs have not been studied in a similar manner. Recently, two software systems for AVs, Baidu Apollo and Autoware, have emerged as frontrunners in the opensource community and have been used by large companies and governments (e.g., Lincoln, Volvo, Ford, Intel, Hitachi, LG, and the US Department of Transportation). From these two leading AV software systems, this paper describes our investigation of 16,851 commits and 499 AV bugs and introduces our classification of those bugs into 13 root causes, 20 bug symptoms, and 18 categories of software components those bugs often affect. We identify 16 major findings from our study and draw broader lessons from them to guide the research community towards future directions in software bug detection, localization, and repair.more » « less
-
null (Ed.)The performance of multimodal mobility systems relies on the seamless integration of conventional mass transit services and the advent of Mobility-on-Demand (MoD) services. Prior work is limited to individually improving various transport networks' operations or linking a new mode to an existing system. In this work, we attempt to solve transit network design and pricing problems of multimodal mobility systems en masse. An operator (public transit agency or private transit operator) determines frequency settings of the mass transit system, flows of the MoD service, and prices for each trip to optimize the overall welfare. A primal-dual approach, inspired by the market design literature, yields a compact mixed integer linear programming (MILP) formulation. However, a key computational challenge remains in allocating an exponential number of hybrid modes accessible to travelers. We provide a tractable solution approach through a decomposition scheme and approximation algorithm that accelerates the computation and enables optimization of large-scale problem instances. Using a case study in Nashville, Tennessee, we demonstrate the value of the proposed model. We also show that our algorithm reduces the average runtime by 60% compared to advanced MILP solvers. This result seeks to establish a generic and simple-to-implement way of revamping and redesigning regional mobility systems in order to meet the increase in travel demand and integrate traditional fixed-line mass transit systems with new demand-responsive services.more » « less