skip to main content


Title: Pilot project purgatory? Assessing automated vehicle pilot projects in U.S. cities
Abstract Pilot projects have emerged in cities globally as a way to experiment with the utilization of a suite of smart mobility and emerging transportation technologies. Automated vehicles (AVs) have become central tools for such projects as city governments and industry explore the use and impact of this emerging technology. This paper presents a large-scale assessment of AV pilot projects in U.S. cities to understand how pilot projects are being used to examine the risks and benefits of AVs, how cities integrate these potentially transformative technologies into conventional policy and planning, and how and what they are learning about this technology and its future opportunities and risks. Through interviews with planning practitioners and document analysis, we demonstrate that the approaches cities take for AVs differ significantly, and often lack coherent policy goals. Key findings from this research include: (1) a disconnect between the goals of the pilot projects and a city’s transportation goals; (2) cities generally lack a long-term vision for how AVs fit into future mobility systems and how they might help address transportation goals; (3) an overemphasis of non-transportation benefits of AV pilots projects; (4) AV pilot projects exhibit a lack of policy learning and iteration; and (5) cities are not leveraging pilot projects for public benefits. Overall, urban and transportation planners and decision makers show a clear interest to discover how AVs can be used to address transportation challenges in their communities, but our research shows that while AV pilot projects purport to do this, while having numerous outcomes, they have limited value for informing transportation policy and planning questions around AVs. We also find that AV pilot projects, as presently structured, may constrain planners’ ability to re-think transportation systems within the context of rapid technological change.  more » « less
Award ID(s):
1828010
NSF-PAR ID:
10344098
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Humanities and Social Sciences Communications
Volume:
8
Issue:
1
ISSN:
2662-9992
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Self-driving technology companies and the research community are accelerating the pace of use of machine learning longitudinal motion planning (mMP) for autonomous vehicles (AVs). This paper reviews the current state of the art in mMP, with an exclusive focus on its impact on traffic congestion. The paper identifies the availability of congestion scenarios in current datasets, and summarizes the required features for training mMP. For learning methods, the major methods in both imitation learning and non-imitation learning are surveyed. The emerging technologies adopted by some leading AV companies, such as Tesla, Waymo, and Comma.ai, are also highlighted. It is found that: (i) the AV industry has been mostly focusing on the long tail problem related to safety and has overlooked the impact on traffic congestion, (ii) the current public self-driving datasets have not included enough congestion scenarios, and mostly lack the necessary input features/output labels to train mMP, and (iii) although the reinforcement learning approach can integrate congestion mitigation into the learning goal, the major mMP method adopted by industry is still behavior cloning, whose capability to learn a congestion-mitigating mMP remains to be seen. Based on the review, the study identifies the research gaps in current mMP development. Some suggestions for congestion mitigation for future mMP studies are proposed: (i) enrich data collection to facilitate the congestion learning, (ii) incorporate non-imitation learning methods to combine traffic efficiency into a safety-oriented technical route, and (iii) integrate domain knowledge from the traditional car-following theory to improve the string stability of mMP. 
    more » « less
  2. null (Ed.)
    The design of autonomous vehicles (AVs) and the design of AV-enabled mobility systems are closely coupled. Indeed, knowledge about the intended service of AVs would impact their design and deployment process, whilst insights about their technological development could significantly affect transportation management decisions. This calls for tools to study such a coupling and co-design AVs and AV-enabled mobility systems in terms of different objectives. In this paper, we instantiate a framework to address such co-design problems. In particular, we leverage the recently developed theory of co-design to frame and solve the problem of designing and deploying an intermodal Autonomous Mobility-on-Demand system, whereby AVs service travel demands jointly with public transit, in terms of fleet sizing, vehicle autonomy, and public transit service frequency. Our framework is modular and compositional, allowing one to describe the design problem as the interconnection of its individual components and to tackle it from a system-level perspective. To showcase our methodology, we present a real-world case study for Washington D.C., USA. Our work suggests that it is possible to create user-friendly optimization tools to systematically assess costs and benefits of interventions, and that such analytical techniques might gain a momentous role in policy-making in the future. 
    more » « less
  3. Over the past several decades, urban planning has considered a variety of advanced analysis methods with greater and lesser degrees of adoption. Geographic Information Systems (GIS) is probably the most notable, with others such as database management systems (DBMS), decision support systems (DSS), planning support systems (PSS), and expert systems (ES), having mixed levels of recognition and acceptance (Kontokosta, C. E. (2021). Urban informatics in the science and practice of planning. Journal of Planning Education and Research, 41(4), 382–395. doi:10.1177/0739456X18793716; Yigitcanlar, T., Desouza, K. C., Butler, L., & Roozkhosh, F. (2020). Contributions and risks of artificial intelligence (AI) in building smarter cities: Insights from a systematic review of the literature. Energies, 13(6), 1473). Advances in information technologies have moved very slowly in the field of urban planning, more recently concerning ‘smart city’ technologies while revolutionizing other domains, such as consumer goods and services. Baidu, Amazon, Netflix, Google, and many others are using these technologies to gain insights into consumer behaviour and characteristics and improve supply chains and logistics. This is an opportune time for urban planners to consider the application of AI-related techniques given vast increases in data availability, increased processing speeds, and increased popularity and development of planning related applications. Research on these topics by urban planning scholars has increased over the past few years, but there is little evidence to suggest that the results are making it into the hands of professional planners (Batty, M. (2018). Artificial intelligence and smart cities. Environment and Planning B: Urban Analytics and City Science, 45(1), 3–6; Batty, M. (2021). Planning education in the digital age. Environment and Planning B: Urban Analytics and City Science, 48(2), 207–211). Others encourage planners to leverage the ubiquity of data and advances in computing to enhance redistributive justice in information resources and procedural justice in decision-making among marginalized communities (Boeing, G., Besbris, M., Schachter, A., & Kuk, J. (2020). Housing search in the Age of Big data: Smarter cities or the same Old blind spots? Housing Policy Debate, 31(1), 112–126; Goodspeed, R. (2015). Smart cities: Moving beyond urban cybernetics to tackle wicked problems. Cambridge journal of regions, Economy and Society, 8(1), 79–92). This article highlights findings from a recent literature review on AI in planning and discusses the results of a national survey of urban planners about their perspectives on AI adoption and concerns they have expressed about its broader use in the profession. Currently, the outlook is mixed, matching how urban planners initially viewed the early stages of computer adoption within the profession. And yet today, personal computers are essential to any job. 
    more » « less
  4. This research is motivated by the need for students’ early exposure to work readiness skills that promote effectiveness in dealing with complex open-ended technical problems as may be encountered in senior capstone projects or professional practice. This paper presents preliminary work in the use of building Rube Goldberg machines as student projects to foster some of these skills. Design of Rube Goldberg machines may be employed in a number of settings as a vehicle for teaching basic engineering skills. These designs require students to creatively consider a variety of unconventional approaches to solve simple problems. The Rube Goldberg paradigm allows students to communicate and to advance their ideas in a low-pressure environment where brainstorming is highly valued and where prior technical expertise affords no specific advantage. As such, projects based on Rube Goldberg machines are an effective way for freshmen and sophomore students, who may lack extensive technical skills, to acquire greater proficiency in some of the non-technical skills. This research gives results from a pilot study in project management using the Rube Goldberg model. The goal of this study is to determine the perceived efficacy of a proposed teaching vehicle for project management concepts that could strengthen the early stages of an existing series of Project Based Learning (PBL) oriented undergraduate engineering courses at the host institution, which currently make use of more closed-ended and single-solution design projects. In the study, a cohort of 27 engineering and engineering technology students participated in a sequence of extracurricular sessions in which they undertook progressively challenging open-ended project assignments. Each project introduced new constraints that required the students to address additional aspects of project management. Results from an end-of-year survey show that the participants had strongly positive impressions of their experiences related to these exercises. A majority of students felt that they had enhanced skills that would be valuable in professional life (96%), improved their leadership skills (92%), and had gained appreciation for the value of project planning (100%) and technical documentation (96%). It is anticipated that lessons learned from the project sequence will provide the framework for cross-disciplinary freshman and sophomore assignments in host institution’s PBL curriculum in the future. 
    more » « less
  5. One of the most notable global transportation trends is the accelerated pace of development in vehicle automation technologies. Uncertainty surrounds the future of automated mobility as there is no clear consensus on potential adoption patterns, ownership versus shared use status, and travel impacts. Adding to this uncertainty is the impact of the COVID-19 pandemic which has triggered profound changes in mobility behaviors as well as accelerated the adoption of new technologies at an unprecedented rate. Accordingly, this study examines the impact of the COVID-19 pandemic on people’s intention to adopt the emerging technology of autonomous vehicles (AVs). Using data from a survey disseminated in June 2020 to 700 respondents in the United States, a difference-in-difference regression is performed to analyze the shift in willingness to use AVs as part of an on-demand mobility service before and during the pandemic. The results reveal that the COVID-19 pandemic had a positive and highly significant impact on the intention to use AVs. This shift is present regardless of tech-savviness, gender, or urban/rural household location. Results indicate that individuals who are younger, politically left-leaning, and frequent users of on-demand modes of travel are expected to be more likely to use AVs once offered. Understanding the systematic segment and attribute variation determining the increase in consideration of AVs is important for policy making, as these effects provide a guide to predicting adoption of AVs—once available—and to identify segments of the population likely to be more resistant to adopting AVs.

     
    more » « less