skip to main content


Title: Secretion, Maturation, and Activity of a Quorum Sensing Peptide (GSP) Inducing Bacteriocin Transcription in Streptococcus gallolyticus
ABSTRACT Streptococcus gallolyticus subsp. gallolyticus is an emerging opportunistic pathogen responsible for septicemia and endocarditis in the elderly. Invasive infections by S. gallolyticus subsp. gallolyticus are strongly linked to the occurrence of colorectal cancer (CRC). It was previously shown that increased secondary bile salts under CRC conditions enhance the bactericidal activity of gallocin, a bacteriocin produced by S. gallolyticus subsp. gallolyticus , enabling it to colonize the mouse colon by outcompeting resident enterococci (L. Aymeric, F. Donnadieu, C. Mulet, L. du Merle, et al., Proc Natl Acad Sci U S A 115:E283–E291, 2018, https://doi.org/10.1073/pnas.1715112115 ). In a separate study, we showed that S. gallolyticus subsp. gallolyticus produces and secretes a 21-mer peptide that activates bacteriocin production (A. Proutière, L. du Merle, B. Périchon, H. Varet, et al., mBio 11:e03187-20, 2020, https://doi.org/10.1128/mBio.03187-20 ). This peptide was named CSP because of its sequence similarity with competence-stimulating peptides found in other streptococci. Here, we demonstrate that CSP is a bona fide quorum sensing peptide involved in activation of gallocin gene transcription. We therefore refer to CSP as GSP (gallocin-stimulating peptide). GSP displays some unique features, since its N-terminal amino acid lies three residues after the double glycine leader sequence. Here, we set out to investigate the processing and export pathway that leads to mature GSP. Heterologous expression in Lactococcus lactis of the genes encoding GSP and the BlpAB transporter is sufficient to produce the 21-mer form of GSP in the supernatant, indicating that S. gallolyticus subsp. gallolyticus BlpAB displays an atypical cleavage site. We also conducted the first comprehensive structure-activity relationship (SAR) analysis of S. gallolyticus subsp. gallolyticus GSP to identify its key structural features and found that unlike many other similar streptococci signaling peptides (such as CSPs), nearly half of the mature GSP sequence can be removed (residues 1 to 9) without significantly impacting the peptide activity. IMPORTANCE Streptococcus gallolyticus subsp. gallolyticus is an opportunistic pathogen associated with colorectal cancer (CRC) and endocarditis. S. gallolyticus subsp. gallolyticus utilizes quorum sensing (QS) to regulate the production of a bacteriocin (gallocin) and gain a selective advantage in colonizing the colon. In this article, we report (i) the first structure-activity relationship study of the S. gallolyticus subsp. gallolyticus QS pheromone that regulates gallocin production, (ii) evidence that the active QS pheromone is processed to its mature form by a unique ABC transporter and not processed by an extracellular protease, and (iii) supporting evidence of interspecies interactions between streptococcal pheromones. Our results revealed the minimal pheromone scaffold needed for gallocin activation and uncovered unique interactions between two streptococcal QS signals that warrant further study.  more » « less
Award ID(s):
1808370
NSF-PAR ID:
10209520
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Federle, Michael J.; Dunny, Gary M.
Date Published:
Journal Name:
mBio
Volume:
12
Issue:
1
ISSN:
2150-7511
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. LaRock, Christopher N. (Ed.)
    ABSTRACT Streptococcus gallolyticus subsp. gallolyticus ( SGG ) is an opportunistic gut pathogen associated with colorectal cancer. We previously showed that colonization of the murine colon by SGG in tumoral conditions was strongly enhanced by the production of gallocin A, a two-peptide bacteriocin. Here, we aimed to characterize the mechanisms of its action and resistance. Using a genetic approach, we demonstrated that gallocin A is composed of two peptides, GllA1 and GllA2, which are inactive alone and act together to kill “target” bacteria. We showed that gallocin A can kill phylogenetically close relatives of the pathogen. Importantly, we demonstrated that gallocin A peptides can insert themselves into membranes and permeabilize lipid bilayer vesicles. Next, we showed that the third gene of the gallocin A operon, gip , is necessary and sufficient to confer immunity to gallocin A. Structural modeling of GllA1 and GllA2 mature peptides suggested that both peptides form alpha-helical hairpins stabilized by intramolecular disulfide bridges. The presence of a disulfide bond in GllA1 and GllA2 was confirmed experimentally. Addition of disulfide-reducing agents abrogated gallocin A activity. Likewise, deletion of a gene encoding a surface protein with a thioredoxin-like domain impaired the ability of gallocin A to kill Enterococcus faecalis . Structural modeling of GIP revealed a hairpin-like structure strongly resembling those of the GllA1 and GllA2 mature peptides, suggesting a mechanism of immunity by competition with GllA1/2. Finally, identification of other class IIb bacteriocins exhibiting a similar alpha-helical hairpin fold stabilized with an intramolecular disulfide bridge suggests the existence of a new subclass of class IIb bacteriocins. IMPORTANCE Streptococcus gallolyticus subsp. gallolyticus ( SGG ), previously named Streptococcus bovis biotype I, is an opportunistic pathogen responsible for invasive infections (septicemia, endocarditis) in elderly people and is often associated with colon tumors. SGG is one of the first bacteria to be associated with the occurrence of colorectal cancer in humans. Previously, we showed that tumor-associated conditions in the colon provide SGG with an ideal environment to proliferate at the expense of phylogenetically and metabolically closely related commensal bacteria such as enterococci (1). SGG takes advantage of CRC-associated conditions to outcompete and substitute commensal members of the gut microbiota using a specific bacteriocin named gallocin, recently renamed gallocin A following the discovery of gallocin D in a peculiar SGG isolate. Here, we showed that gallocin A is a two-peptide bacteriocin and that both GllA1 and GllA2 peptides are required for antimicrobial activity. Gallocin A was shown to permeabilize bacterial membranes and kill phylogenetically closely related bacteria such as most streptococci, lactococci, and enterococci, probably through membrane pore formation. GllA1 and GllA2 secreted peptides are unusually long (42 and 60 amino acids long) and have very few charged amino acids compared to well-known class IIb bacteriocins. In silico modeling revealed that both GllA1 and GllA2 exhibit a similar hairpin-like conformation stabilized by an intramolecular disulfide bond. We also showed that the GIP immunity peptide forms a hairpin-like structure similar to GllA1/GllA2. Thus, we hypothesize that GIP blocks the formation of the GllA1/GllA2 complex by interacting with GllA1 or GllA2. Gallocin A may constitute the first class IIb bacteriocin which displays disulfide bridges important for its structure and activity and might be the founding member of a subtype of class IIb bacteriocins. 
    more » « less
  2. Biswas, Indranil (Ed.)
    ABSTRACT The genus Streptococcus encompasses a large bacterial taxon that commonly colonizes mucosal surfaces of vertebrates and is capable of disease etiologies originating from diverse body sites, including the respiratory, digestive, and reproductive tracts. Identifying new modes of treating infections is of increasing importance, as antibiotic resistance has escalated. Streptococcus mutans is an important opportunistic pathogen that is an agent of dental caries and is capable of systemic diseases such as endocarditis. As such, understanding how it regulates virulence and competes in the oral niche is a priority in developing strategies to defend from these pathogens. We determined that S. mutans UA159 possesses a bona fide short hydrophobic peptide (SHP)/Rgg quorum-sensing system that regulates a specialized biosynthetic operon featuring a radical-SAM ( S -adenosyl- l -methionine) (RaS) enzyme and produces a ribosomally synthesized and posttranslationally modified peptide (RiPP). The pairing of SHP/Rgg regulatory systems with RaS biosynthetic operons is conserved across streptococci, and a locus similar to that in S. mutans is found in Streptococcus ferus , an oral streptococcus isolated from wild rats. We identified the RaS-RiPP product from this operon and solved its structure using a combination of analytical methods; we term these RiPPs tryglysin A and B for the unusual Trp-Gly-Lys linkage. We report that tryglysins specifically inhibit the growth of other streptococci, but not other Gram-positive bacteria such as Enterococcus faecalis or Lactococcus lactis . We predict that tryglysin is produced by S. mutans in its oral niche, thus inhibiting the growth of competing species, including several medically relevant streptococci. IMPORTANCE Bacteria interact and compete with a large community of organisms in their natural environment. Streptococcus mutans is one such organism, and it is an important member of the oral microbiota. We found that S. mutans uses a quorum-sensing system to regulate production of a novel posttranslationally modified peptide capable of inhibiting growth of several streptococcal species. We find inhibitory properties of a similar peptide produced by S. ferus and predict that these peptides play a role in interspecies competition in the oral niche. 
    more » « less
  3. Streptococcus sinensis is a recently identified member of the Mitis group of streptococci. This species has been associated with infective endocarditis; however its mechanisms of pathogenesis and virulence are not fully understood. This study aimed to investigate the influence of the competence-stimulating peptide (CSP) and the competence regulon quorum-sensing circuitry (ComABCDE) on subsequent gene transcription and expression, as well as resultant phenotypes. In this study we confirmed the native CSP identity, ascertained when endogenous CSP was produced and completed a transcriptome-wide analysis of all genes following CSP exposure. RNA sequencing analysis revealed the upregulation of genes known to be associated with competence, biofilm formation and virulence. As such, a variety of phenotypic assays were utilized to assess the correlation between increased mRNA expression and potential phenotype response, ultimately gaining insight into the effects of CSP on both gene expression and developed phenotypes. The results indicated that the addition of exogenous CSP aided in competence development and successful transformation, yielding an average transformation efficiency comparable to that of other Mitis group streptococci. Additional studies are needed to further delineate the effects of CSP exposure on biofilm formation and virulence. Overall, this study provides novel information regarding S. sinensis and provides a substantial foundation on which this species and its role in disease pathogenesis can be further investigated. 
    more » « less
  4. Abstract

    Streptococcus pneumoniae(pneumococcus) is a human pathobiont that causes drastic antibiotic‐resistant infections and is responsible for millions of deaths universally. Pneumococcus pathogenicity relies on the competence‐stimulating peptide (CSP)‐mediated quorum‐sensing (QS) pathway that controls competence development for genetic transformation and, consequently, the spread of antibiotic resistance and virulence genes. Modulation of QS inS. pneumoniaecan therefore be used to enervate pneumococcal infectivity as well as minimize the susceptibility to resistance development. In this work, we sought to optimize the interaction of CSP1 with its cognate transmembrane histidine kinase receptor (ComD1) through substitution of proteogenic and nonproteogenic amino acids on the hydrophobic binding face of CSP1. The findings from this study not only provided additional structure–activity data that are significant in optimizing CSP1 potency, but also led to the development of potent QS modulators. These CSP‐based QS modulators could be used as privileged scaffolds for the development of antimicrobial agents against pneumococcal infections.

     
    more » « less
  5. Understanding bacterial communication mechanisms is imperative to improve our current understanding of bacterial infectivity and find alternatives to current modes of antibacterial therapeutics. Both Gram-positive and Gram-negative bacteria use quorum sensing (QS) to regulate group behaviours and associated phenotypes in a cell-density-dependent manner. Group behaviours, phenotypic expression and resultant infection and disease can largely be attributed to efficient bacterial communication. Of particular interest are the communication mechanisms of Gram-positive bacteria known as streptococci. This group has demonstrated marked resistance to traditional antibiotic treatment, resulting in increased morbidity and mortality of infected hosts and an ever-increasing burden on the healthcare system. Modulating circuits and mechanisms involved in streptococcal communication has proven to be a promising anti-virulence therapeutic approach that allows managing bacterial phenotypic response but does not affect bacterial viability. Targeting the chemical signals bacteria use for communication is a promising starting point, as manipulation of these signals can dramatically affect resultant bacterial phenotypes, minimizing associated morbidity and mortality. This review will focus on the use of modified peptide signals in modulating the development of proliferative phenotypes in different streptococcal species, specifically regarding how such modification can attenuate bacterial infectivity and aid in developing future alternative therapeutic agents. 
    more » « less