skip to main content


Title: Investigating the Streptococcus sinensis competence regulon through a combination of transcriptome analysis and phenotypic evaluation
Streptococcus sinensis is a recently identified member of the Mitis group of streptococci. This species has been associated with infective endocarditis; however its mechanisms of pathogenesis and virulence are not fully understood. This study aimed to investigate the influence of the competence-stimulating peptide (CSP) and the competence regulon quorum-sensing circuitry (ComABCDE) on subsequent gene transcription and expression, as well as resultant phenotypes. In this study we confirmed the native CSP identity, ascertained when endogenous CSP was produced and completed a transcriptome-wide analysis of all genes following CSP exposure. RNA sequencing analysis revealed the upregulation of genes known to be associated with competence, biofilm formation and virulence. As such, a variety of phenotypic assays were utilized to assess the correlation between increased mRNA expression and potential phenotype response, ultimately gaining insight into the effects of CSP on both gene expression and developed phenotypes. The results indicated that the addition of exogenous CSP aided in competence development and successful transformation, yielding an average transformation efficiency comparable to that of other Mitis group streptococci. Additional studies are needed to further delineate the effects of CSP exposure on biofilm formation and virulence. Overall, this study provides novel information regarding S. sinensis and provides a substantial foundation on which this species and its role in disease pathogenesis can be further investigated.  more » « less
Award ID(s):
1808370
NSF-PAR ID:
10384170
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Microbiology
Volume:
168
Issue:
10
ISSN:
1350-0872
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Federle, Michael J. ; Dunny, Gary M. (Ed.)
    ABSTRACT Streptococcus gallolyticus subsp. gallolyticus is an emerging opportunistic pathogen responsible for septicemia and endocarditis in the elderly. Invasive infections by S. gallolyticus subsp. gallolyticus are strongly linked to the occurrence of colorectal cancer (CRC). It was previously shown that increased secondary bile salts under CRC conditions enhance the bactericidal activity of gallocin, a bacteriocin produced by S. gallolyticus subsp. gallolyticus , enabling it to colonize the mouse colon by outcompeting resident enterococci (L. Aymeric, F. Donnadieu, C. Mulet, L. du Merle, et al., Proc Natl Acad Sci U S A 115:E283–E291, 2018, https://doi.org/10.1073/pnas.1715112115 ). In a separate study, we showed that S. gallolyticus subsp. gallolyticus produces and secretes a 21-mer peptide that activates bacteriocin production (A. Proutière, L. du Merle, B. Périchon, H. Varet, et al., mBio 11:e03187-20, 2020, https://doi.org/10.1128/mBio.03187-20 ). This peptide was named CSP because of its sequence similarity with competence-stimulating peptides found in other streptococci. Here, we demonstrate that CSP is a bona fide quorum sensing peptide involved in activation of gallocin gene transcription. We therefore refer to CSP as GSP (gallocin-stimulating peptide). GSP displays some unique features, since its N-terminal amino acid lies three residues after the double glycine leader sequence. Here, we set out to investigate the processing and export pathway that leads to mature GSP. Heterologous expression in Lactococcus lactis of the genes encoding GSP and the BlpAB transporter is sufficient to produce the 21-mer form of GSP in the supernatant, indicating that S. gallolyticus subsp. gallolyticus BlpAB displays an atypical cleavage site. We also conducted the first comprehensive structure-activity relationship (SAR) analysis of S. gallolyticus subsp. gallolyticus GSP to identify its key structural features and found that unlike many other similar streptococci signaling peptides (such as CSPs), nearly half of the mature GSP sequence can be removed (residues 1 to 9) without significantly impacting the peptide activity. IMPORTANCE Streptococcus gallolyticus subsp. gallolyticus is an opportunistic pathogen associated with colorectal cancer (CRC) and endocarditis. S. gallolyticus subsp. gallolyticus utilizes quorum sensing (QS) to regulate the production of a bacteriocin (gallocin) and gain a selective advantage in colonizing the colon. In this article, we report (i) the first structure-activity relationship study of the S. gallolyticus subsp. gallolyticus QS pheromone that regulates gallocin production, (ii) evidence that the active QS pheromone is processed to its mature form by a unique ABC transporter and not processed by an extracellular protease, and (iii) supporting evidence of interspecies interactions between streptococcal pheromones. Our results revealed the minimal pheromone scaffold needed for gallocin activation and uncovered unique interactions between two streptococcal QS signals that warrant further study. 
    more » « less
  2. Becker, Anke (Ed.)
    ABSTRACT The transcriptional regulator PecS is encoded by select bacterial pathogens. For instance, in the plant pathogen Dickeya dadantii , PecS controls a range of virulence genes, including pectinase genes and the divergently oriented gene pecM , which encodes an efflux pump through which the antioxidant indigoidine is exported. In the plant pathogen Agrobacterium fabrum (formerly named Agrobacterium tumefaciens ), the pecS-pecM locus is conserved. Using a strain of A. fabrum in which pecS has been disrupted, we show here that PecS controls a range of phenotypes that are associated with bacterial fitness. PecS represses flagellar motility and chemotaxis, which are processes that are important for A. fabrum to reach plant wound sites. Biofilm formation and microaerobic survival are reduced in the pecS disruption strain, whereas the production of acyl homoserine lactone (AHL) and resistance to reactive oxygen species (ROS) are increased when pecS is disrupted. AHL production and resistance to ROS are expected to be particularly relevant in the host environment. We also show that PecS does not participate in the induction of vir genes. The inducing ligands for PecS, urate, and xanthine, may be found in the rhizosphere, and they accumulate within the plant host upon infection. Therefore, our data suggest that PecS mediates A. fabrum fitness during its transition from the rhizosphere to the host plant. IMPORTANCE PecS is a transcription factor that is conserved in several pathogenic bacteria, where it regulates virulence genes. The plant pathogen Agrobacterium fabrum is important not only for its induction of crown galls in susceptible plants but also for its role as a tool in the genetic manipulation of host plants. We show here that A. fabrum PecS controls a range of phenotypes, which would confer the bacteria an advantage while transitioning from the rhizosphere to the host plant. This includes the production of signaling molecules, which are critical for the propagation of the tumor-inducing plasmid. A more complete understanding of the infection process may inform approaches by which to treat infections as well as to facilitate the transformation of recalcitrant plant species. 
    more » « less
  3. null (Ed.)
    Abstract Background Acinetobacter baumannii is a gram-negative bacterium which causes opportunistic infections in immunocompromised hosts. Genome plasticity has given rise to a wide range of strain variation with respect to antimicrobial resistance profiles and expression of virulence factors which lead to altered phenotypes associated with pathogenesis. The purpose of this study was to analyze clinical strains of A. baumannii for phenotypic variation that might correlate with virulence phenotypes, antimicrobial resistance patterns, or strain isolation source. We hypothesized that individual strain virulence phenotypes might be associated with anatomical site of isolation or alterations in susceptibility to antimicrobial interventions. Methodology A cohort of 17 clinical isolates of A. baumannii isolated from diverse anatomical sites were evaluated to ascertain phenotypic patterns including biofilm formation, hemolysis, motility, and antimicrobial resistance. Antibiotic susceptibility/resistance to ampicillin-sulbactam, amikacin, ceftriaxone, ceftazidime, cefotaxime, ciprofloxacin, cefepime, gentamicin, levofloxacin, meropenem, piperacillin, trimethoprim-sulfamethoxazole, ticarcillin- K clavulanate, tetracyclin, and tobramycin was determined. Results Antibiotic resistance was prevalent in many strains including resistance to ampicillin-sulbactam, amikacin, ceftriaxone, ceftazidime, cefotaxime, ciprofloxacin, cefepime, gentamicin, levofloxacin, meropenem, piperacillin, trimethoprim-sulfamethoxazole, ticarcillin- K clavulanate, tetracyclin, and tobramycin. All strains tested induced hemolysis on agar plate detection assays. Wound-isolated strains of A. baumannii exhibited higher motility than strains isolated from blood, urine or Foley catheter, or sputum/bronchial wash. A. baumannii strains isolated from patient blood samples formed significantly more biofilm than isolates from wounds, sputum or bronchial wash samples. An inverse relationship between motility and biofilm formation was observed in the cohort of 17 clinical isolates of A. baumannii tested in this study. Motility was also inversely correlated with induction of hemolysis. An inverse correlation was observed between hemolysis and resistance to ticarcillin-k clavulanate, meropenem, and piperacillin. An inverse correlation was also observed between motility and resistance to ampicillin-sulbactam, ceftriaxone, ceftoxamine, ceftazidime, ciprofloxacin, or levofloxacin. Conclusions Strain dependent variations in biofilm and motility are associated with anatomical site of isolation. Biofilm and hemolysis production both have an inverse association with motility in the cohort of strains utilized in this study, and motility and hemolysis were inversely correlated with resistance to numerous antibiotics. 
    more » « less
  4. Abstract

    Streptococcus mutansis a key pathogenic bacterium in the oral cavity and a primary contributor to dental caries. TheS. mutansCid/Lrg system likely contributes to tolerating stresses encountered in this environment ascidand/orlrgmutants exhibit altered oxidative stress sensitivity, genetic competence, and biofilm phenotypes. It was recently noted that thecidBmutant had two stable colony morphologies: a “rough” phenotype (similar to wild type) and a “smooth” phenotype. In our previously published work, thecidBrough mutant exhibited increased sensitivity to oxidative stress, and RNAseq identified widespread transcriptomic changes in central carbon metabolism and oxidative stress response genes. In this current report, we conducted Illumina‐based genome resequencing of wild type,cidBrough, andcidBsmooth mutants and compared their resistance to oxidative and acid stress, biofilm formation, and competence phenotypes. BothcidBmutants exhibited comparable aerobic growth inhibition on agar plates, during planktonic growth, and in the presence of 1 mM hydrogen peroxide. ThecidBsmooth mutant displayed a significant competence defect in BHI, which was rescuable by synthetic CSP. BothcidBmutants also displayed reduced XIP‐mediated competence, although this reduction was more pronounced in thecidBsmooth mutant. Anaerobic biofilms of thecidBsmooth mutant displayed increased propidium iodide staining, but corresponding biofilm CFU data suggest this phenotype is due to cell damage and not increased cell death. ThecidBrough anaerobic biofilms showed altered structure relative to wild type (reduced biomass and average thickness) which correlated with decreased CFU counts. Sequencing data revealed that thecidBsmooth mutant has a unique “loss of read coverage” of ~78 kb of DNA, corresponding to the genomic island TnSMU2 and genes flanking its 3′ end. It is therefore likely that the unique biofilm and competence phenotypes of thecidBsmooth mutant are related to its genomic changes in this region.

     
    more » « less
  5. Comstock, Laurie E. (Ed.)
    ABSTRACT Burkholderia thailandensis is a member of the Burkholderia pseudomallei complex. It encodes the transcription factor MftR, which is conserved among the more pathogenic Burkholderia spp. and previously shown to be a global regulator of gene expression. We report here that a B. thailandensis strain in which the mftR gene is disrupted is more virulent in both Caenorhabditis elegans and onion. The Δ mftR strain exhibits a number of phenotypes associated with virulence. It is more proficient at forming biofilm, and the arcDABC gene cluster, which has been linked to anaerobic survival and fitness within a biofilm, is upregulated. Swimming and swarming motility are also elevated in Δ mftR cells. We further show that MftR is one of several transcription factors which control production of the siderophore malleobactin. MftR binds directly to the promoter driving expression of mbaS , which encodes the extracytoplasmic function sigma factor MbaS that is required for malleobactin production. Malleobactin is a primary siderophore in B. thailandensis as evidenced by reduced siderophore production in mbaS ::Tc cells, in which mbaS is disrupted. Expression of mbaS is increased ~5-fold in Δ mftR cells, and siderophore production is elevated. Under iron-limiting conditions, mbaS expression is increased ~150-fold in both wild-type and Δ mftR cells, respectively, reflecting regulation by the ferric uptake regulator (Fur). The mbaS expression profiles also point to repression by a separate, ligand-responsive transcription factor, possibly ScmR. Taken together, these data indicate that MftR controls a number of phenotypes, all of which promote bacterial survival in a host environment. IMPORTANCE Bacterial pathogens face iron limitation in a host environment. To overcome this challenge, they produce siderophores, small iron-chelating molecules. Uptake of iron-siderophore complexes averts bacterial iron limitation. In Burkholderia spp., malleobactin or related compounds are the primary siderophores. We show here that genes encoding proteins required for malleobactin production in B. thailandensis are under the direct control of the global transcription factor MftR. Repression of gene expression by MftR is relieved when MftR binds xanthine, a purine metabolite present in host cells. Our work therefore identifies a mechanism by which siderophore production may be optimized in a host environment, thus contributing to bacterial fitness. 
    more » « less