skip to main content


Title: Arthropods are not declining but are responsive to disturbance in the Luquillo Experimental Forest, Puerto Rico

A number of recent studies have documented long-term declines in abundances of important arthropod groups, primarily in Europe and North America. These declines are generally attributed to habitat loss, but a recent study [B.C. Lister, A. Garcia,Proc. Natl. Acad. Sci. USA115, E10397–E10406 (2018)] from the Luquillo Experimental Forest (LEF) in Puerto Rico attributed declines to global warming. We analyze arthropod data from the LEF to evaluate long-term trends within the context of hurricane-induced disturbance, secondary succession, and temporal variation in temperature. Our analyses demonstrate that responses to hurricane-induced disturbance and ensuing succession were the primary factors that affected total canopy arthropod abundances on host trees, as well as walkingstick abundance on understory shrubs. Ambient and understory temperatures played secondary roles for particular arthropod species, but populations were just as likely to increase as they were to decrease in abundance with increasing temperature. The LEF is a hurricane-mediated system, with major hurricanes effecting changes in temperature that are larger than those induced thus far by global climate change. To persist, arthropods in the LEF must contend with the considerable variation in abiotic conditions associated with repeated, large-scale, and increasingly frequent pulse disturbances. Consequently, they are likely to be well-adapted to the effects of climate change, at least over the short term. Total abundance of canopy arthropods after Hurricane Maria has risen to levels comparable to the peak after Hurricane Hugo. Although the abundances of some taxa have declined over the 29-y period, others have increased, reflecting species turnover in response to disturbance and secondary succession.

 
more » « less
Award ID(s):
1950643 1831952
NSF-PAR ID:
10209587
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
118
Issue:
2
ISSN:
0027-8424
Page Range / eLocation ID:
Article No. e2002556117
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Aim

    Climate‐induced pulse (e.g., hurricanes) and press (e.g., global warming) disturbances represent threats to populations, communities, and the ecosystem services that they provide. We leveraged three decades of annual data on tropical gastropods to quantify the effects of major hurricanes, associated secondary succession, and global warming on abundance, biodiversity, and species composition.

    Location

    Luquillo Mountains, Puerto Rico.

    Methods

    Gastropod abundance, biodiversity, and composition were estimated annually for each of 27 years in a tropical montane forest that experienced three major hurricanes (Hugo, Georges, and Maria). Generalized linear mixed‐effects, linear mixed‐effects, and linear models evaluated population‐ and community‐level responses to year, ambient temperature, understorey temperature, hurricane, and time since hurricane. Variation partitioning determined the unique and shared variation in biotic responses associated with temperature, disturbance, and succession.

    Results

    Rather than declining, gastropod abundances generally increased through time, whereas the responses of biodiversity were weak and scale dependent. Hurricanes and associated secondary succession, rather than ambient atmospheric temperature, moulded long‐term trends in abundances and biodiversity.

    Main conclusions

    Global warming over the past 30 years has not progressed sufficiently to elicit significant responses by gastropods in the Luquillo Mountains. Rather, effects from pulse disturbances (i.e., hurricanes) and secondary succession currently drive long‐term variation in abundance and biodiversity. Gastropods evince high resilience in this tropical ecosystem. Historical exposure to recurrent hurricanes likely imbued the fauna with broad niches that make them resistant to current levels of global warming. We predict that biotic resiliency will be challenged once changes in temperature exceed interannual and inter‐habitat differences that typify this hurricane‐mediated system, or combine with an increased frequency of hurricanes and droughts to alter associations among environmental characteristics that define the fundamental niches of species. Only then might significant declines in abundance or the appearance of novel communities characterize the gastropod fauna in the Luquillo Mountains.

     
    more » « less
  2. null (Ed.)
    Abstract. With projected increasing intensity of hurricanes and largeuncertainty in the path of forest recovery from hurricanes, studies areneeded to understand the fundamental response of forests to canopy openingand debris deposition: the response of the abiotic factors underneath thecanopy. Through two manipulative experiments and instrumenting prior toHurricane Maria (2017) in the Luquillo Experimental Forest (LEF) ofPuerto Rico, this study found a long recovery time of primary abioticfactors (beneath canopy light, throughfall, and temperature) influenced bythe disturbance of canopy opening, as well as complex responses by the secondaryabiotic factors (relative humidity, soil moisture, and leaf saturation)influenced by the disturbance of the primary factors. Recovery took 4–5 years for beneath canopy light, while throughfall recovery took 4–9 yearsand neither had recovered when Hurricane Maria passed 3 years after thesecond experiment. Air and soil temperature seemingly recovered quickly fromeach disturbance (<2.5 years in two experiments for ∼+1 ∘C of change); however, temperature was the most importantmodulator of secondary factors, which followed the long-term patterns of thethroughfall. While the soil remained wetter and relative humidity in the airstayed lower until recovery, leaves in the litter and canopy were wetter anddrier, with evidence that leaves dry out faster in low rainfall and saturatefaster in high rainfall after disturbance. Comparison of satellite and fielddata before and after the 2017 hurricanes showed the utility of satellitesin expanding the data coverage, but the muted response of the satellite datasuggests they measure dense forest as well as thin forest that is not asdisturbed by hurricanes. Thus, quick recovery times recorded by satellitesshould not be assumed representative of all the forest. Data recordsspanning the multiple manipulative experiments followed by HurricaneMaria in the LEF provide evidence that intermediate hurricane frequencyhas the most extreme abiotic response (with evidence on almost all abioticfactors tested) versus infrequent or frequent hurricanes. 
    more » « less
  3. Abstract

    With predictions of increased frequency of intense hurricanes, it is increasingly crucial to understand how biotic and abiotic components of forests will be affected. This study describes canopy arthropod responses to repeated experimental and natural canopy opening at the Luquillo Experimental Forest Long‐term Ecological Research Site (LTER) in Puerto Rico. The canopy trimming experiment (CTE1) treatments were started in 2004, and a second trimming (CTE2) was conducted in 2014, to study effects of increased hurricane frequency at the site. Paired disturbed plots with canopy trimmed (trim) and undisturbed plots with no trimming (no trim) were replicated in three experimental blocks. Arthropods were sampled by bagging branches on seven representative early and late successional overstory and understory tree species annually from 2004 to 2009 for CTE1 and 2015 to 2019 for CTE2. In addition to the experimental manipulation, the CTE site was disturbed by Hurricane Maria (Category 4) in September 2017, providing an additional natural canopy opening to the experiment. We evaluated the effect of the second experimental trimming, compared canopy arthropod responses to the three canopy‐opening events, and compared the effects of experimental trimming and natural canopy opening by Hurricane Maria. The second experimental canopy trimming produced canopy arthropod responses consistent with hurricane disturbances, with sap‐sucking herbivores increasing in abundance on the trimmed plots, whereas other functional groups generally declined in abundance in disturbed plots. Responses to the first and second trimmings were generally similar. However, Hurricane Maria exacerbated the responses, indicating the likely effect of increased hurricane frequency and intensity.

     
    more » « less
  4. Abstract

    Tropical forest understory regeneration occurs rapidly after disturbance with compositional trajectories that depend on species availability and environmental conditions. To predict future tropical forest regeneration dynamics, we need a deeper understanding of how pulse disturbance events, like hurricanes, interact with environmental variability to affect understory demography and composition. We examined fern and sapling mortality, recruitment, and community composition in relation to solar radiation and soil moisture using 17 years of forest dynamics data (2003–2019) from the Canopy Trimming Experiment in the Luquillo Experimental Forest, Puerto Rico. Solar radiation increased 150% and soil moisture increased 40% following canopy trimming of experimental plots relative to control plots. All plots were disturbed in 2017 by Hurricanes Irma and Maria, so experimentally trimmed plots presented the opportunity to study the effects of multiple hurricanes, while control plots isolated the effects of a single natural hurricane. Recruitment rates maximized at 0.14 individuals/plot/month for ferns and 0.20 stems/plot/month for saplings. Recruitment and mortality were distributed more evenly over the 17 years of monitoring in experimentally trimmed plots than in control plots; however, following Hurricane Maria demographic rates substantially increased in control plots only. In experimentally trimmed plots, the largest community compositional shifts occurred as a result of the trimming events, and compositional changes were greatest for control plots after Hurricane Maria in 2017. Pioneer tree and fern species increased in abundance in response to both simulated and natural hurricanes. Following Hurricane Maria, two dominant pioneer species,Cyathea arboreaandCecropia schreberiana, recruited abundantly, but only in control plots. In trimmed plots, increased solar radiation and soil moisture shifted understory species composition steadily toward pioneer and secondary‐successional species, with soil moisture interacting strongly with canopy trimming. Thus, both solar radiation and soil moisture are environmental drivers affecting pioneer species recruitment following disturbance, which interact with canopy opening following hurricanes. Our results suggest that if hurricane disturbances increase in frequency and severity, as suggested by climate change predictions, the understory regeneration of late‐successional species, such asManilkara bidentataandSloanea berteroana, which prefer deeper shade and slightly drier soil microsites, may become imperiled.

     
    more » « less
  5. The Anthropocene is characterized by complex, primarily human‐generated, disturbance regimes that include combinations of long‐term press (e.g. climate change, pollution) and episodic pulse (e.g. cyclonic storms, floods, wildfires, land use change) disturbances. Within any regime, disturbances occur at multiple spatial and temporal scales, creating complex and varied interactions that influence spatiotemporal dynamics in the abundance, distribution and biodiversity of organisms. Moreover, responses to disturbance are context dependent, with the legacies of previous disturbances affecting responses to ensuing perturbations. We use three decades of annual data to evaluate the effects of repeated pulse disturbances and global warming on gastropod populations and communities in Puerto Rico at multiple spatial scales. More specifically, we quantify 1) the relative importance of large‐scale and small‐scale aspects of disturbance on variation in abundance, biodiversity and species composition; and 2) the spatial scales at which populations and communities integrate information in the spatially heterogenous environments created by disturbances. Gastropods do not exhibit consistent decreases in abundance or biodiversity in association with global warming: abundance for many species has increased over time and species richness does not evince a temporal trend. Nonetheless, gastropods are sensitive to hurricane severity, spatial environmental variation and successional trajectories of the flora. In addition, they exhibit context dependent (i.e. legacy effects) responses that are scale dependent. The Puerto Rican biota has evolved in a disturbance‐mediated system. This historical exposure to repeated, severe hurricane‐induced disturbances has imbued the biota with high resistance and resilience to the current disturbance regime, resulting in an ability to persist or thrive under current environmental conditions. Nonetheless, these ecosystems may yet be threatened by worsening direct and indirect effects of climate change. In particular, more frequent and severe hurricanes may prevent the establishment of closed canopy forests, negatively impacting populations and communities that rely on these habitats.

     
    more » « less