skip to main content


Search for: All records

Award ID contains: 1831952

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Aim

    Climate‐induced pulse (e.g., hurricanes) and press (e.g., global warming) disturbances represent threats to populations, communities, and the ecosystem services that they provide. We leveraged three decades of annual data on tropical gastropods to quantify the effects of major hurricanes, associated secondary succession, and global warming on abundance, biodiversity, and species composition.

    Location

    Luquillo Mountains, Puerto Rico.

    Methods

    Gastropod abundance, biodiversity, and composition were estimated annually for each of 27 years in a tropical montane forest that experienced three major hurricanes (Hugo, Georges, and Maria). Generalized linear mixed‐effects, linear mixed‐effects, and linear models evaluated population‐ and community‐level responses to year, ambient temperature, understorey temperature, hurricane, and time since hurricane. Variation partitioning determined the unique and shared variation in biotic responses associated with temperature, disturbance, and succession.

    Results

    Rather than declining, gastropod abundances generally increased through time, whereas the responses of biodiversity were weak and scale dependent. Hurricanes and associated secondary succession, rather than ambient atmospheric temperature, moulded long‐term trends in abundances and biodiversity.

    Main conclusions

    Global warming over the past 30 years has not progressed sufficiently to elicit significant responses by gastropods in the Luquillo Mountains. Rather, effects from pulse disturbances (i.e., hurricanes) and secondary succession currently drive long‐term variation in abundance and biodiversity. Gastropods evince high resilience in this tropical ecosystem. Historical exposure to recurrent hurricanes likely imbued the fauna with broad niches that make them resistant to current levels of global warming. We predict that biotic resiliency will be challenged once changes in temperature exceed interannual and inter‐habitat differences that typify this hurricane‐mediated system, or combine with an increased frequency of hurricanes and droughts to alter associations among environmental characteristics that define the fundamental niches of species. Only then might significant declines in abundance or the appearance of novel communities characterize the gastropod fauna in the Luquillo Mountains.

     
    more » « less
  2. Abstract

    Hurricanes cause dramatic changes to forests by opening the canopy and depositing debris onto the forest floor. How invasive rodent populations respond to hurricanes is not well understood, but shifts in rodent abundance and foraging may result from scarce fruit and seed resources that follow hurricanes. We conducted studies in a wet tropical forest in Puerto Rico to better understand how experimental (canopy trimming experiment) and natural (Hurricane Maria) hurricane effects alter populations of invasive rodents (Rattus rattus[rats] andMus musculus[mice]) and their foraging behaviors. To monitor rodent populations, we used tracking tunnels (inked and baited cards inside tunnels enabling identification of animal visitors' footprints) within experimental hurricane plots (arborist trimmed in 2014) and reference plots (closed canopy forest). To assess shifts in rodent foraging, we compared seed removal of two tree species (Guarea guidoniaandPrestoea acuminata) between vertebrate‐excluded and free‐access treatments in the same experimental and reference plots, and did so 3 months before and 9 months after Hurricane Maria (2017). Trail cameras were used to identify animals responsible for seed removal. Rat incidences generated from tracking tunnel surveys indicated that rat populations were not significantly affected by experimental or natural hurricanes. Before Hurricane Maria there were no mice in the forest interior, yet mice were present in forest plots closest to the road after the hurricane, and their forest invasion coincided with increased grass cover resulting from open forest canopy. Seed removal ofGuareaandPrestoeaacross all plots was rat dominated (75%–100% rat‐removed) and was significantly less after than before Hurricane Maria. However, following Hurricane Maria, the experimental hurricane treatment plots of 2014 had 3.6 times greater seed removal by invasive rats than did the reference plots, which may have resulted from rats selecting post‐hurricane forest patches with greater understory cover for foraging. Invasive rodents are resistant to hurricane disturbance in this forest. Predictions of increased hurricane frequency from expected climate change should result in forest with more frequent periods of grassy understories and mouse presence, as well as with heightened rat foraging for fruit and seed in preexisting areas of disturbance.

     
    more » « less
  3. Abstract

    With predictions of increased frequency of intense hurricanes, it is increasingly crucial to understand how biotic and abiotic components of forests will be affected. This study describes canopy arthropod responses to repeated experimental and natural canopy opening at the Luquillo Experimental Forest Long‐term Ecological Research Site (LTER) in Puerto Rico. The canopy trimming experiment (CTE1) treatments were started in 2004, and a second trimming (CTE2) was conducted in 2014, to study effects of increased hurricane frequency at the site. Paired disturbed plots with canopy trimmed (trim) and undisturbed plots with no trimming (no trim) were replicated in three experimental blocks. Arthropods were sampled by bagging branches on seven representative early and late successional overstory and understory tree species annually from 2004 to 2009 for CTE1 and 2015 to 2019 for CTE2. In addition to the experimental manipulation, the CTE site was disturbed by Hurricane Maria (Category 4) in September 2017, providing an additional natural canopy opening to the experiment. We evaluated the effect of the second experimental trimming, compared canopy arthropod responses to the three canopy‐opening events, and compared the effects of experimental trimming and natural canopy opening by Hurricane Maria. The second experimental canopy trimming produced canopy arthropod responses consistent with hurricane disturbances, with sap‐sucking herbivores increasing in abundance on the trimmed plots, whereas other functional groups generally declined in abundance in disturbed plots. Responses to the first and second trimmings were generally similar. However, Hurricane Maria exacerbated the responses, indicating the likely effect of increased hurricane frequency and intensity.

     
    more » « less
  4. Abstract

    The equilibrium theory of island biogeography and its quantitative consideration of origination and extinction dynamics as they relate to island area and distance from source populations have evolved over time and enriched theory related to many disciplines in spatial ecology. Indeed, the island focus was catalytic to the emergence of landscape ecology and macroecology in the late 20th century. We integrate concepts and perspectives of island biogeography, landscape ecology, macroecology, and metacommunity ecology, and show how these disciplines have advanced the understanding of variation in abundance, biodiversity, and composition of bat communities. We leverage the well‐studied bat fauna of the islands in the Caribbean to illustrate the complex interplay of ecological, biogeographical, and evolutionary processes in molding local biodiversity and system‐wide structure. Thereafter, we highlight the role of habitat loss and fragmentation, which is increasing at an accelerating rate during the Anthropocene, on the structure of local bat communities and regional metacommunities across landscapes. Bat species richness increases with the amount of available habitat, often forming nested subsets along gradients of patch or island area. Similarly, the distance to and identity of sources of colonization influence the richness, composition, and metacommunity structure of islands and landscape networks.

     
    more » « less
  5. Abstract

    Extreme rainfall events in the humid-tropical Luquillo Mountains, Puerto Rico export the bulk of suspended sediment and particulate organic carbon. Using 25 years of river carbon and suspended sediment data, which targeted hurricanes and other large rainstorms, we estimated biogenic particulate organic carbon yields of 65 ± 16 tC km−2yr−1for the Icacos and 17.7 ± 5.1 tC km−2yr−1for the Mameyes rivers. These granitic and volcaniclastic catchments function as substantial atmospheric carbon-dioxide sinks, largely through export of river biogenic particulate organic carbon during extreme rainstorms. Compared to other regions, these high biogenic particulate organic carbon yields are accompanied by lower suspended sediment yields. Accordingly, particulate organic carbon export from these catchments is underpredicted by previous yield relationships, which are derived mainly from catchments with easily erodible sedimentary rocks. Therefore, rivers that drain petrogenic-carbon-poor bedrock require separate accounting to estimate their contributions to the geological carbon cycle.

     
    more » « less
  6. Abstract

    Atmospheric deposition of dissolved organic carbon (DOC) to terrestrial ecosystems is a small, but rarely studied component of the global carbon (C) cycle. Emissions of volatile organic compounds (VOC) and organic particulates are the sources of atmospheric C and deposition represents a major pathway for the removal of organic C from the atmosphere. Here, we evaluate the spatial and temporal patterns of DOC deposition using 70 data sets at least one year in length ranging from 40° south to 66° north latitude. Globally, the median DOC concentration in bulk deposition was 1.7 mg L−1. The DOC concentrations were significantly higher in tropical (<25°) latitudes compared to temperate (>25°) latitudes. DOC deposition was significantly higher in the tropics because of both higher DOC concentrations and precipitation. Using the global median or latitudinal specific DOC concentrations leads to a calculated global deposition of 202 or 295 Tg C yr−1respectively. Many sites exhibited seasonal variability in DOC concentration. At temperate sites, DOC concentrations were higher during the growing season; at tropical sites, DOC concentrations were higher during the dry season. Thirteen of the thirty‐four long‐term (>10 years) data sets showed significant declines in DOC concentration over time with the others showing no significant change. Based on the magnitude and timing of the various sources of organic C to the atmosphere, biogenic VOCs likely explain the latitudinal pattern and the seasonal pattern at temperate latitudes while decreases in anthropogenic emissions are the most likely explanation for the declines in DOC concentration.

     
    more » « less
  7. Abstract

    Tropical regions are experiencing high rates of forest cover loss coupled with changes in the volume and timing of rainfall. These shifts can compromise streamflow and water provision, highlighting the need to identify how forest cover influences streamflow generation under variable rainfall conditions. Although rainfall is the key driver of streamflow regimes, the role of forests is less clear, particularly in tropical regions where forest loss is an ongoing risk. Forest cover loss alters evapotranspiration, rainfall infiltration and storage, and may increase stream ecosystem vulnerability to rainfall extremes. Puerto Rico, an island with spatially heterogenous forest cover and a marked geographic rainfall gradient, is projected to experience more frequent droughts and flash flooding. Using 15‐min streamflow data collected between 2005 and 2016 from 20 US Geological Survey stream gages and 3‐hourly Multi‐Source Weighted‐Ensemble Precipitation rainfall estimates, we utilized flow‐duration curves and linear mixed regression models to examine the role of forest cover in regulating the timing and volume of streamflow. The mixed model approach helps to account for differences in watershed characteristics. We determined the effects of rainfall and forest cover on low and peak flows in Puerto Rican streams, then evaluated changes in these relationships under dry and wet antecedent rainfall conditions. Watersheds with high forest cover had consistently greater low and peak streamflow than deforested ones under all rainfall conditions, although the effect was more marked during wet antecedent conditions, suggesting that peak flow is largely the result of saturation excess overland flow. During dry antecedent rainfall conditions, highly forested watersheds had higher streamflow than deforested ones, suggesting greater hillslope storage and release may also be at play. Our results demonstrate that forest cover generated a net increase in hillslope infiltration and storage and may lessen drought impacts on streamflow in Puerto Rico. Resilience to prolonged drought may be limited by finite water storage potential in this steep, mountainous setting, highlighting maintenance of forest cover as an important water management strategy to increase infiltration.

     
    more » « less
  8. Summary

    Rapid changes in climate and disturbance regimes, including droughts and hurricanes, are likely to influence tropical forests, but our understanding of the compound effects of disturbances on forest ecosystems is extremely limited. Filling this knowledge gap is necessary to elucidate the future of these ecosystems under a changing climate.

    We examined the relationship between hurricane response (damage, mortality, and resilience) and four hydraulic traits of 13 dominant woody species in a wet tropical forest subject to periodic hurricanes.

    Species with high resistance to embolisms (lowP50values) and higher safety margins () were more resistant to immediate hurricane mortality and breakage, whereas species with higher hurricane resilience (rapid post‐hurricane growth) had high capacitance andP50values and low . During 26 yr of post‐hurricane recovery, we found a decrease in community‐weighted mean values for traits associated with greater drought resistance (leaf turgor loss point,P50, ) and an increase in capacitance, which has been linked with lower drought resistance.

    Hurricane damage favors slow‐growing, drought‐tolerant species, whereas post‐hurricane high resource conditions favor acquisitive, fast‐growing but drought‐vulnerable species, increasing forest productivity at the expense of drought tolerance and leading to higher overall forest vulnerability to drought.

     
    more » « less
  9. Abstract

    We examined how climate variability affects the mobilization of material from six watersheds. We analyzed one to seven years of high‐frequency sensor data from a temperate ecosystem and a tropical rainforest. We applied a windowed analysis to correlate concentration‐discharge (C‐Q) behavior with climate anomalies, providing insight into how hydrological and biogeochemical processes change in response to climate variability. Positive precipitation anomalies homogenized the C‐Q responses for dissolved organic matter, nitrate, specific conductance and turbidity, indicating that hydrological processes dominate the C‐Q signal and watersheds act as “conveyor belts” of material. In contrast, drier and warmer conditions led to C‐Q behavior associated with variation in solute concentration, suggesting that biogeochemical processes are a primary control on solute export and their response to flow. Results indicate that climate variability can move watersheds along a continuum from transporter‐to‐transformer of biologically active solutes and responses can potentially vary by biome.

     
    more » « less
  10. Abstract

    Lithium isotopes are used to trace weathering intensity, but little is known about the processes that fractionate them in highly weathered settings, where secondary minerals play a dominant role in weathering reactions. To help fill this gap in our knowledge of Li isotope systematics, we investigated Li isotope fractionation at an andesitic catchment in Puerto Rico, where the highest rates of silicate weathering on Earth have been documented. We found the lowest δ7Li values published to date for porewater (−27‰) and bulk regolith (−38‰), representing apparent fractionations relative to parent rock of −31‰ and −42‰, respectively. We also found δ7Li values that are lower in the exchangeable fraction than in the bulk regolith or porewater, the opposite than expected from secondary mineral precipitation. We interpret these large isotopic offsets and the unusual relationships between Li pools as resulting from two distinct weathering processes at different depths in the regolith. At the bedrock‐regolith transition (9.3–8.5 m depth), secondary mineral precipitation preferentially retains the lighter6Li isotope. These minerals then dissolve further up the profile, leaching6Li from the bulk solid, with a total variation of about +50‰withinthe profile, attributable primarily to clay dissolution. Importantly, streamwater δ7Li (about +35‰) is divorced entirely from these regolith weathering processes, instead reflecting deeper weathering reactions (>9.3 m). Our work thus shows that the δ7Li of waters draining highly weathered catchments may reflect bedrock mineralogy and hydrology, rather than weathering intensity in the regolith covering the catchment.

     
    more » « less