skip to main content


Title: Columnar Vertical Profile (CVP) Methodology for Validating Polarimetric Radar Retrievals in Ice Using In Situ Aircraft Measurements
Abstract A novel way to process polarimetric radar data collected via plan position indicator (PPI) scans and display those data in a time–height format is introduced. The columnar vertical profile (CVP) methodology uses radar data collected via multiple elevation scans, limited to data within a set region in range and azimuth relative to the radar, to create vertical profiles of polarimetric radar data representative of that limited region in space. This technique is compared to others existing in the literature, and various applications are discussed. Polarimetric ice microphysical retrievals are performed on CVPs created within the stratiform rain region of two mesoscale convective systems sampled during two field campaigns, where CVPs follow the track of research aircraft. Aircraft in situ data are collocated to microphysical retrieval data, and the accuracy of these retrievals is tested against other retrieval techniques in the literature.  more » « less
Award ID(s):
1841246
PAR ID:
10209593
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Atmospheric and Oceanic Technology
Volume:
37
Issue:
9
ISSN:
0739-0572
Page Range / eLocation ID:
1623 to 1642
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Radar retrievals of drop size distribution (DSD) parameters are developed and evaluated over the mountainous Olympic Peninsula of Washington State. The observations used to develop retrievals were collected during the 2015/16 Olympic Mountain Experiment (OLYMPEX) and included the NASA S-band dual-polarimetric (NPOL) radar and a collection of second-generation Particle Size and Velocity (PARSIVEL2) disdrometers over the windward slopes of the barrier. Nonlinear and random forest regressions are applied to the PARSIVEL2 data to develop retrievals for median volume diameter, liquid water content, and rain rate. Improvement in DSD retrieval accuracy, defined by the mean error of the retrieval relative to PARSIVEL2 observations, was achieved when using the random forest model when compared with nonlinear regression. Evaluation of disdrometer observations and the retrievals from NPOL indicate that the radar retrievals can accurately reproduce observed DSDs in this region, including the common wintertime regime of small but numerous raindrops that is important there. NPOL retrievals during the OLYMPEX period are further evaluated using two-dimensional video disdrometers (2DVD) and vertically pointing Micro Rain Radars. Results indicate that radar retrievals using random forests may be skillful in capturing DSD characteristics in the lowest portions of the atmosphere.

     
    more » « less
  2. Abstract The discovery of a polarimetric radar signature indicative of hydrometeor refreezing has shown promise in its utility to identify periods of ice pellet production. Uniquely characterized well below the melting layer by locally enhanced values of differential reflectivity ( Z DR ) within a layer of decreasing radar reflectivity factor at horizontal polarization ( Z H ), the signature has been documented in cases where hydrometeors were completely melted prior to refreezing. However, polarimetric radar features associated with the refreezing of partially melted hydrometeors have not been examined as rigorously in either an observational or microphysical modeling framework. Here, polarimetric radar data—including vertically pointing Doppler spectral data from the Ka-band Scanning Polarimetric Radar (KASPR)—are analyzed for an ice pellets and rain mixture event where the ice pellets formed via the refreezing of partially melted hydrometeors. Observations show that no such distinct localized Z DR enhancement is present, and that values instead decrease directly beneath enhanced values associated with melting. A simplified, explicit bin microphysical model is then developed to simulate the refreezing of partially melted hydrometeors, and coupled to a polarimetric radar forward operator to examine the impacts of such refreezing on simulated radar variables. Simulated vertical profiles of polarimetric radar variables and Doppler spectra have similar features to observations, and confirm that a Z DR enhancement is not produced. This suggests the possibility of two distinct polarimetric features of hydrometeor refreezing: ones associated with refreezing of completely melted hydrometeors, and those associated with refreezing of partially melted hydrometeors. Significance Statement There exist two pathways for the formation of ice pellets: refreezing of fully melted hydrometeors, and refreezing of partially melted hydrometeors. A polarimetric radar signature indicative of fully melted hydrometeor refreezing has been extensively documented in the past, yet no study has documented the refreezing of partially melted hydrometeors. Here, observations and idealized modeling simulations are presented to show different polarimetric radar features associated with partially melted hydrometeor refreezing. The distinction in polarimetric features may be beneficial to identifying layers of supercooled liquid drops within transitional winter storms. 
    more » « less
  3. Abstract This study evaluates ice particle size distribution and aspect ratio φ Multi-Radar Multi-Sensor (MRMS) dual-polarization radar retrievals through a direct comparison with two legs of observational aircraft data obtained during a winter storm case from the Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS) campaign. In situ cloud probes, satellite, and MRMS observations illustrate that the often-observed K dp and Z DR enhancement regions in the dendritic growth layer can either indicate a local number concentration increase of dry ice particles or the presence of ice particles mixed with a significant number of supercooled liquid droplets. Relative to in situ measurements, MRMS retrievals on average underestimated mean volume diameters by 50% and overestimated number concentrations by over 100%. IWC retrievals using Z DR and K dp within the dendritic growth layer were minimally biased relative to in situ calculations where retrievals yielded −2% median relative error for the entire aircraft leg. Incorporating φ retrievals decreased both the magnitude and spread of polarimetric retrievals below the dendritic growth layer. While φ radar retrievals suggest that observed dendritic growth layer particles were nonspherical (0.1 ≤ φ ≤ 0.2), in situ projected aspect ratios, idealized numerical simulations, and habit classifications from cloud probe images suggest that the population mean φ was generally much higher. Coordinated aircraft radar reflectivity with in situ observations suggests that the MRMS systematically underestimated reflectivity and could not resolve local peaks in mean volume diameter sizes. These results highlight the need to consider particle assumptions and radar limitations when performing retrievals. significance statement Developing snow is often detectable using weather radars. Meteorologists combine these radar measurements with mathematical equations to study how snow forms in order to determine how much snow will fall. This study evaluates current methods for estimating the total number and mass, sizes, and shapes of snowflakes from radar using images of individual snowflakes taken during two aircraft legs. Radar estimates of snowflake properties were most consistent with aircraft data inside regions with prominent radar signatures. However, radar estimates of snowflake shapes were not consistent with observed shapes estimated from the snowflake images. Although additional research is needed, these results bolster understanding of snow-growth physics and uncertainties between radar measurements and snow production that can improve future snowfall forecasting. 
    more » « less
  4. Abstract

    A variational retrieval of rain microphysics from polarimetric radar data (PRD) has been developed through the use of S-band parameterized polarimetric observation operators. Polarimetric observations allow for the optimal retrieval of cloud and precipitation microphysics for weather quantification and data assimilation for convective-scale numerical weather prediction (NWP) by linking PRD to physical parameters. Rain polarimetric observation operators for reflectivity ZH, differential reflectivity ZDR, and specific differential phase KDP were derived for S-band PRD using T-matrix scattering amplitudes. These observation operators link the PRD to the physical parameters of water content W and mass-/volume-weighted diameter Dm for rain, which can be used to calculate other microphysical information. The S-band observation operators were tested using a 1D variational retrieval that uses the (nonlinear) Gauss–Newton method to iteratively minimize the cost function to find an optimal estimate of Dm and W separately for each azimuth of radar data, which can be applied to a plan position indicator (PPI) radar scan (i.e., a single elevation). Experiments on two-dimensional video disdrometer (2DVD) data demonstrated the advantages of including ΦDP observations and using the nonlinear solution rather than the (linear) optimal interpolation (OI) solution. PRD collected by the Norman, Oklahoma (KOUN) WSR-88D on 15 June 2011 were used to successfully test the retrieval method on radar data. The successful variational retrieval from the 2DVD and the radar data demonstrate the utility of the proposed method.

     
    more » « less
  5. Abstract. Many passive remote-sensing techniques have beendeveloped to retrieve cloud microphysical properties from satellite-basedsensors, with the most common approaches being the bispectral andpolarimetric techniques. These two vastly different retrieval techniqueshave been implemented for a variety of polar-orbiting and geostationarysatellite platforms, providing global climatological data sets. Priorinstrument comparison studies have shown that there are systematicdifferences between the droplet size retrieval products (effective radius)of bispectral (e.g., MODIS, Moderate Resolution Imaging Spectroradiometer)and polarimetric (e.g., POLDER, Polarization and Directionality of Earth'sReflectances) instruments. However, intercomparisons of airborne bispectraland polarimetric instruments have yielded results that do not appear to besystematically biased relative to one another. Diagnosing this discrepancyis complicated, because it is often difficult for instrument intercomparisonstudies to isolate differences between retrieval technique sensitivities andspecific instrumental differences such as calibration and atmosphericcorrection. In addition to these technical differences the polarimetricretrieval is also sensitive to the dispersion of the droplet sizedistribution (effective variance), which could influence the interpretationof the droplet size retrieval. To avoid these instrument-dependentcomplications, this study makes use of a cloud remote-sensing retrievalsimulator. Created by coupling a large-eddy simulation (LES) cloud modelwith a 1-D radiative transfer model, the simulator serves as a test bed forunderstanding differences between bispectral and polarimetric retrievals.With the help of this simulator we can not only compare the two techniquesto one another (retrieval intercomparison) but also validate retrievalsdirectly against the LES cloud properties. Using the satellite retrievalsimulator, we are able to verify that at high spatial resolution (50m) thebispectral and polarimetric retrievals are highly correlated with oneanother within expected observational uncertainties. The relatively smallsystematic biases at high spatial resolution can be attributed to differentsensitivity limitations of the two retrievals. In contrast, a systematicdifference between the two retrievals emerges at coarser resolution. Thisbias largely stems from differences related to sensitivity of the tworetrievals to unresolved inhomogeneities in effective variance and opticalthickness. The influence of coarse angular resolution is found to increaseuncertainty in the polarimetric retrieval but generally maintains aconstant mean value.

     
    more » « less