skip to main content

Title: Willingness to delay charging of electric vehicles
Electrification of vehicles is becoming one of the main avenues for decarbonization of the transportation market. To reduce stress on the energy grid, large-scale charging will require optimal scheduling of when electricity is delivered to vehicles. Coordinated electric-vehicle charging can produce optimal, flattened loads that would improve reliability of the power system as well as reduce system costs and emissions. However, a challenge for successful introduction of coordinated deadline-scheduling of residential charging comes from the demand side: customers would need to be willing both to defer charging their vehicles and to accept less than a 100% target for battery charge. Within a coordinated electric-vehicle charging pilot run by the local utility in upstate New York, this study analyzes the necessary incentives for customers to accept giving up control of when charging of their vehicles takes place. Using data from a choice experiment implemented in an online survey of electric-vehicle owners and lessees in upstate New York (N=462), we make inference on the willingness to pay for features of hypothetical coordinated electric-vehicle charging programs. To address unobserved preference heterogeneity, we apply Variational Bayes (VB) inference to a mixed logit model. Stochastic variational inference has recently emerged as a fast and computationally-efficient more » alternative to Markov chain Monte Carlo (MCMC) methods for scalable Bayesian estimation of discrete choice models. Our results show that individuals negatively perceive the duration of the timeframe in which the energy provider would be allowed to defer charging, even though both the desired target for battery charge and deadline would be respected. This negative monetary valuation is evidenced by an expected average reduction in the annual fee of joining the charging program of $2.64 per hour of control yielded to the energy provider. Our results also provide evidence of substantial heterogeneity in preferences. For example, the 25% quantile of the posterior distribution of the mean of the willingness to accept an additional hour of control yielded to the utility is $5.16. However, the negative valuation of the timeframe for deferring charging is compensated by positive valuation of emission savings coming from switching charging to periods of the day with a higher proportion of generation from renewable sources. Customers also positively valued discounts in the price of energy delivery. « less
Authors:
Award ID(s):
1632124
Publication Date:
NSF-PAR ID:
10209596
Journal Name:
25th Annual Conference of the European Association Environmental and Resource Economists
Sponsoring Org:
National Science Foundation
More Like this
  1. Energy markets are rapidly changing with smarter, connected, more reliable infrastructure and cleaner generation on the supply side, and more choice, greater control and enhanced flexibility for customers. This paper examines willingness to pay for bundled smart home energy products and information services, using data from a set of two discrete choice experiments that were part of a survey by the regional energy provider of upstate New York. To let the data reveal how preferences are distributed in the population, a logit-mixed logit model in willingness-to-pay space and a combination of observed and unobserved preference heterogeneity was specified and fitted.more »Results show that residents of Tompkins County are willing to pay more than in other counties for residential storage, and that for home energy management there is an important generational divide with millennials being much more likely to perceive the economic value in the smart energy technologies. The flexible logit-mixed logit estimates provide evidence of important heterogeneity in preferences: whereas most of the population has a positive –albeit rather low– valuation of smart energy products and services, there is a considerable percentage of customers with negative perceptions.« less
  2. As renewable electricity generation continues to increase in the United States (US), considerable effort goes into matching heterogeneous supply to demand at a subhour time-step. As a result, some electric providers offer incentive-based programs for residential consumers that aim to reduce electric demand during high-demand periods. There is little research into determinants of consumer response to incentive-based programs beyond typical sociodemographic characteristics. To add to this body of literature, this paper presents the findings of a dichotomous choice contingent valuation (CV) survey targeting US ratepayers’ participation in a direct-load-control scheme utilizing a smart thermostat designed to reallocate consumer electricity demandmore »on summer days when grid stress is high. Our results show approximately 50% of respondents are willing to participate at a median willingness-to-accept (WTA) figure of USD 9.50 (95% CI: 3.74, 15.25) per month that lasts for one summer (June through August)—or slightly less than USD 30 per annum. Participation is significantly affected by a respondent’s attitudes and preferences surrounding various environmental and institutional perspectives, but not by sociodemographic characteristics. These findings suggest utilities designing direct-load-control programs may improve participation by designing incentives specific to customers’ attitudes and preferences.« less
  3. This paper proposes a solar energy harvesting based modular battery balance system for electric vehicles. The proposed system is designed to charge the battery module with minimum SOC/voltage by solar power during charging and discharging. With the solar power input, the useful energy of the battery can be improved while vehicle driving. For vehicle charging, the charging energy from grid and total charging time can be reduced as well. Simulation analysis shows that for a 50Ah rated battery pack, the overall pure electric drive mileage can be improved by 22.9%, while consumed grid energy and total charging time can bemore »reduced by 9.6% and 9.3% respectively. In addition, the battery life can be improved around 10%~11%. The prototype design and test of a 48V battery pack vehicle consisting of four 12V battery modules are carried out. The experimental results validate that the system has good modular balance performance for the 100Ah battery modules with 5~7A charging current from solar power, and the overall usable battery energy has been increased.« less
  4. This paper presents one of the first real-life demonstrations of coordinated and distributed resource control for secondary frequency response in a power distribution grid. A series of tests involved up to 69 heterogeneous active distributed energy resources consisting of air handling units, unidirectional and bidirectional electric vehicle charging stations, a battery energy storage system, and 107 passive distributed energy resources consisting of building loads and solar photovoltaic systems. The distributed control setup consists of a set of Raspberry Pi end-points exchanging messages via an ethernet switch. Actuation commands for the distributed energy resources are obtained by solving a power allocationmore »problem at every regulation instant using distributed ratio-consensus, primal-dual, and Newton-like algorithms. The problem formulation minimizes the sum of distributed energy resource costs while tracking the aggregate setpoint provided by the system operator. We demonstrate accurate and fast real-time distributed computation of the optimization solution and effective tracking of the regulation signal over 40 min time horizons. An economic benefit analysis confirms eligibility to participate in an ancillary services market and demonstrates up to $53k of potential annual revenue for the selected population of distributed energy resources.« less
  5. Public transit agencies are focused on making their fixed-line bus systems more energy efficient by introducing electric (EV) and hybrid (HV) vehicles to their eets. However, because of the high upfront cost of these vehicles, most agencies are tasked with managing a mixed-fleet of internal combustion vehicles (ICEVs), EVs, and HVs. In managing mixed-fleets, agencies require accurate predictions of energy use for optimizing the assignment of vehicles to transit routes, scheduling charging, and ensuring that emission standards are met. The current state-of-the-art is to develop separate neural network models to predict energy consumption for each vehicle class. Although different vehiclemore »classes’ energy consumption depends on a varied set of covariates, we hypothesize that there are broader generalizable patterns that govern energy consumption and emissions. In this paper, we seek to extract these patterns to aid learning to address two problems faced by transit agencies. First, in the case of a transit agency which operates many ICEVs, HVs, and EVs, we use multi-task learning (MTL) to improve accuracy of forecasting energy consumption. Second, in the case where there is a significant variation in vehicles in each category, we use inductive transfer learning (ITL) to improve predictive accuracy for vehicle class models with insufficient data. As this work is to be deployed by our partner agency, we also provide an online pipeline for joining the various sensor streams for xed-line transit energy prediction. We find that our approach outperforms vehicle-specific baselines in both the MTL and ITL settings.« less