skip to main content


Title: Willingness to delay charging of electric vehicles
Electrification of vehicles is becoming one of the main avenues for decarbonization of the transportation market. To reduce stress on the energy grid, large-scale charging will require optimal scheduling of when electricity is delivered to vehicles. Coordinated electric-vehicle charging can produce optimal, flattened loads that would improve reliability of the power system as well as reduce system costs and emissions. However, a challenge for successful introduction of coordinated deadline-scheduling of residential charging comes from the demand side: customers would need to be willing both to defer charging their vehicles and to accept less than a 100% target for battery charge. Within a coordinated electric-vehicle charging pilot run by the local utility in upstate New York, this study analyzes the necessary incentives for customers to accept giving up control of when charging of their vehicles takes place. Using data from a choice experiment implemented in an online survey of electric-vehicle owners and lessees in upstate New York (N=462), we make inference on the willingness to pay for features of hypothetical coordinated electric-vehicle charging programs. To address unobserved preference heterogeneity, we apply Variational Bayes (VB) inference to a mixed logit model. Stochastic variational inference has recently emerged as a fast and computationally-efficient alternative to Markov chain Monte Carlo (MCMC) methods for scalable Bayesian estimation of discrete choice models. Our results show that individuals negatively perceive the duration of the timeframe in which the energy provider would be allowed to defer charging, even though both the desired target for battery charge and deadline would be respected. This negative monetary valuation is evidenced by an expected average reduction in the annual fee of joining the charging program of $2.64 per hour of control yielded to the energy provider. Our results also provide evidence of substantial heterogeneity in preferences. For example, the 25% quantile of the posterior distribution of the mean of the willingness to accept an additional hour of control yielded to the utility is $5.16. However, the negative valuation of the timeframe for deferring charging is compensated by positive valuation of emission savings coming from switching charging to periods of the day with a higher proportion of generation from renewable sources. Customers also positively valued discounts in the price of energy delivery.  more » « less
Award ID(s):
1632124
NSF-PAR ID:
10209596
Author(s) / Creator(s):
Date Published:
Journal Name:
25th Annual Conference of the European Association Environmental and Resource Economists
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Energy markets are rapidly changing with smarter, connected, more reliable infrastructure and cleaner generation on the supply side, and more choice, greater control and enhanced flexibility for customers. This paper examines willingness to pay for bundled smart home energy products and information services, using data from a set of two discrete choice experiments that were part of a survey by the regional energy provider of upstate New York. To let the data reveal how preferences are distributed in the population, a logit-mixed logit model in willingness-to-pay space and a combination of observed and unobserved preference heterogeneity was specified and fitted. Results show that residents of Tompkins County are willing to pay more than in other counties for residential storage, and that for home energy management there is an important generational divide with millennials being much more likely to perceive the economic value in the smart energy technologies. The flexible logit-mixed logit estimates provide evidence of important heterogeneity in preferences: whereas most of the population has a positive –albeit rather low– valuation of smart energy products and services, there is a considerable percentage of customers with negative perceptions. 
    more » « less
  2. Abstract Battery electric vehicles (BEVs) have emerged as a promising alternative to traditional internal combustion engine (ICE) vehicles due to benefits in improved fuel economy, lower operating cost, and reduced emission. BEVs use electric motors rather than fossil fuels for propulsion and typically store electric energy in lithium-ion cells. With rising concerns over fossil fuel depletion and the impact of ICE vehicles on the climate, electric mobility is widely considered as the future of sustainable transportation. BEVs promise to drastically reduce greenhouse gas emissions as a result of the transportation sector. However, mass adoption of BEVs faces major barriers due to consumer worries over several important battery-related issues, such as limited range, long charging time, lack of charging stations, and high initial cost. Existing solutions to overcome these barriers, such as building more charging stations, increasing battery capacity, and stationary vehicle-to-vehicle (V2V) charging, often suffer from prohibitive investment costs, incompatibility to existing BEVs, or long travel delays. In this paper, we propose P eer-to- P eer C ar C harging (P2C2), a scalable approach for charging BEVs that alleviates the need for elaborate charging infrastructure. The central idea is to enable BEVs to share charge among each other while in motion through coordination with a cloud-based control system. To re-vitalize a BEV fleet, which is continuously in motion, we introduce Mobile Charging Stations (MoCS), which are high-battery-capacity vehicles used to replenish the overall charge in a vehicle network. Unlike existing V2V charging solutions, the charge sharing in P2C2 takes place while the BEVs are in-motion, which aims at minimizing travel time loss. To reduce BEV-to-BEV contact time without increasing manufacturing costs, we propose to use multiple batteries of varying sizes and charge transfer rates. The faster but smaller batteries are used for charge transfer between vehicles, while the slower but larger ones are used for prolonged charge storage. We have designed the overall P2C2 framework and formalized the decision-making process of the cloud-based control system. We have evaluated the effectiveness of P2C2 using a well-characterized simulation platform and observed dramatic improvement in BEV mobility. Additionally, through statistical analysis, we show that a significant reduction in carbon emission is also possible if MoCS can be powered by renewable energy sources. 
    more » « less
  3. As renewable electricity generation continues to increase in the United States (US), considerable effort goes into matching heterogeneous supply to demand at a subhour time-step. As a result, some electric providers offer incentive-based programs for residential consumers that aim to reduce electric demand during high-demand periods. There is little research into determinants of consumer response to incentive-based programs beyond typical sociodemographic characteristics. To add to this body of literature, this paper presents the findings of a dichotomous choice contingent valuation (CV) survey targeting US ratepayers’ participation in a direct-load-control scheme utilizing a smart thermostat designed to reallocate consumer electricity demand on summer days when grid stress is high. Our results show approximately 50% of respondents are willing to participate at a median willingness-to-accept (WTA) figure of USD 9.50 (95% CI: 3.74, 15.25) per month that lasts for one summer (June through August)—or slightly less than USD 30 per annum. Participation is significantly affected by a respondent’s attitudes and preferences surrounding various environmental and institutional perspectives, but not by sociodemographic characteristics. These findings suggest utilities designing direct-load-control programs may improve participation by designing incentives specific to customers’ attitudes and preferences. 
    more » « less
  4. This paper proposes a solar energy harvesting based modular battery balance system for electric vehicles. The proposed system is designed to charge the battery module with minimum SOC/voltage by solar power during charging and discharging. With the solar power input, the useful energy of the battery can be improved while vehicle driving. For vehicle charging, the charging energy from grid and total charging time can be reduced as well. Simulation analysis shows that for a 50Ah rated battery pack, the overall pure electric drive mileage can be improved by 22.9%, while consumed grid energy and total charging time can be reduced by 9.6% and 9.3% respectively. In addition, the battery life can be improved around 10%~11%. The prototype design and test of a 48V battery pack vehicle consisting of four 12V battery modules are carried out. The experimental results validate that the system has good modular balance performance for the 100Ah battery modules with 5~7A charging current from solar power, and the overall usable battery energy has been increased. 
    more » « less
  5. The driving mileage of electric vehicles (EVs) has been substantially improved in recent years with the adoption of Ni-based layered oxide materials as the battery cathode. The average charging period of EVs is still time-consuming, compared with the short refueling time of an internal combustion engine vehicle. With the guidance from the United States Department of Energy, the charging time of refilling 60% of the battery capacity should be less than 6 min for EVs, indicating that the corresponding charging rate for the cathode materials is to be greater than 6C. However, the sluggish kinetic conditions and insufficient thermal stability of the Ni-based layered oxide materials hinder further application in fast-charging operations. Most of the recent review articles regarding Ni-based layered oxide materials as cathodes for lithium-ion batteries (LIBs) only touch degradation mechanisms under slow charging conditions. Of note, the fading mechanisms of the cathode materials for fast-charging, of which the importance abruptly increases due to the development of electric vehicles, may be significantly different from those of slow charging conditions. There are a few review articles regarding fast-charging; however, their perspectives are limited mostly to battery thermal management simulations, lacking experimental validations such as microscale structure degradations of Ni-based layered oxide cathode materials. In this review, a general and fundamental definition of fast-charging is discussed at first, and then we summarize the rate capability required in EVs and the electrochemical and kinetic properties of Ni-based layered oxide cathode materials. Next, the degradation mechanisms of LIBs leveraging Ni-based cathodes under fast-charging operation are systematically discussed from the electrode scale to the particle scale and finally the atom scale (lattice oxygen-level investigation). Then, various strategies to achieve higher rate capability, such as optimizing the synthesis process of cathode particles, fabricating single-crystalline particles, employing electrolyte additives, doping foreign ions, coating protective layers, and engineering the cathode architecture, are detailed. All these strategies need to be considered to enhance the electrochemical performance of Ni-based oxide cathode materials under fast-charging conditions. 
    more » « less