skip to main content

Title: An Electric Vehicle Battery Modular Balancing System Based on Solar Energy Harvesting
This paper proposes a solar energy harvesting based modular battery balance system for electric vehicles. The proposed system is designed to charge the battery module with minimum SOC/voltage by solar power during charging and discharging. With the solar power input, the useful energy of the battery can be improved while vehicle driving. For vehicle charging, the charging energy from grid and total charging time can be reduced as well. Simulation analysis shows that for a 50Ah rated battery pack, the overall pure electric drive mileage can be improved by 22.9%, while consumed grid energy and total charging time can be reduced by 9.6% and 9.3% respectively. In addition, the battery life can be improved around 10%~11%. The prototype design and test of a 48V battery pack vehicle consisting of four 12V battery modules are carried out. The experimental results validate that the system has good modular balance performance for the 100Ah battery modules with 5~7A charging current from solar power, and the overall usable battery energy has been increased.
; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
IEEE Transportation Electrification Conference and Expo
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents one of the first real-life demonstrations of coordinated and distributed resource control for secondary frequency response in a power distribution grid. A series of tests involved up to 69 heterogeneous active distributed energy resources consisting of air handling units, unidirectional and bidirectional electric vehicle charging stations, a battery energy storage system, and 107 passive distributed energy resources consisting of building loads and solar photovoltaic systems. The distributed control setup consists of a set of Raspberry Pi end-points exchanging messages via an ethernet switch. Actuation commands for the distributed energy resources are obtained by solving a power allocationmore »problem at every regulation instant using distributed ratio-consensus, primal-dual, and Newton-like algorithms. The problem formulation minimizes the sum of distributed energy resource costs while tracking the aggregate setpoint provided by the system operator. We demonstrate accurate and fast real-time distributed computation of the optimization solution and effective tracking of the regulation signal over 40 min time horizons. An economic benefit analysis confirms eligibility to participate in an ancillary services market and demonstrates up to $53k of potential annual revenue for the selected population of distributed energy resources.« less
  2. Electrification of vehicles is becoming one of the main avenues for decarbonization of the transportation market. To reduce stress on the energy grid, large-scale charging will require optimal scheduling of when electricity is delivered to vehicles. Coordinated electric-vehicle charging can produce optimal, flattened loads that would improve reliability of the power system as well as reduce system costs and emissions. However, a challenge for successful introduction of coordinated deadline-scheduling of residential charging comes from the demand side: customers would need to be willing both to defer charging their vehicles and to accept less than a 100% target for battery charge.more »Within a coordinated electric-vehicle charging pilot run by the local utility in upstate New York, this study analyzes the necessary incentives for customers to accept giving up control of when charging of their vehicles takes place. Using data from a choice experiment implemented in an online survey of electric-vehicle owners and lessees in upstate New York (N=462), we make inference on the willingness to pay for features of hypothetical coordinated electric-vehicle charging programs. To address unobserved preference heterogeneity, we apply Variational Bayes (VB) inference to a mixed logit model. Stochastic variational inference has recently emerged as a fast and computationally-efficient alternative to Markov chain Monte Carlo (MCMC) methods for scalable Bayesian estimation of discrete choice models. Our results show that individuals negatively perceive the duration of the timeframe in which the energy provider would be allowed to defer charging, even though both the desired target for battery charge and deadline would be respected. This negative monetary valuation is evidenced by an expected average reduction in the annual fee of joining the charging program of $2.64 per hour of control yielded to the energy provider. Our results also provide evidence of substantial heterogeneity in preferences. For example, the 25% quantile of the posterior distribution of the mean of the willingness to accept an additional hour of control yielded to the utility is $5.16. However, the negative valuation of the timeframe for deferring charging is compensated by positive valuation of emission savings coming from switching charging to periods of the day with a higher proportion of generation from renewable sources. Customers also positively valued discounts in the price of energy delivery.« less
  3. Distributed solar generation is rising rapidly due to a continuing decline in the cost of solar modules. Nearly all of this solar generation feeds into the grid, since battery based energy storage is expensive to install and maintain. Unfortunately, accommodating unlimited intermittent solar power is challenging, since the grid must continuously balance supply and demand. Thus, governments and public utility commissions are increasingly limiting grid connections of new solar installations. These limitations are likely to become more restrictive over time in many areas as solar disrupts the utility business model. Thus, to employ solar without restrictions, users may increasingly needmore »to defect from the grid. Unfortunately, batteries alone are unlikely to become cost-efficient at enabling grid defection for the foreseeable future. To address the problem, we explore using a mixture of solar, batteries, and a whole-home natural gas generator to shift users partially or entirely off the electric grid. We assess the feasibility and compare the cost and carbon emissions of such an approach with using grid power, as well as existing “net metered” solar installations. Our results show that the approach is trending towards cost-competitive based on current prices, reduces carbon emissions relative to using grid power, and enables users to install solar without restriction.« less
  4. The increasing demand for electric vehicles, due to advantages such as higher energy efficiency, lower fuel costs, and less vehicle maintenance, is expected to drive the need for electric vehicle charging infrastructure. Due to their reduced size and weight, high power and scalable compact solid state transformers (SST) are growing in popularity. This study presents the total loss analysis and control design for a direct grid connected single-phase SST for a fast charging station. A control strategy to achieve robust current control, DC voltage and power balancing, and power loss minimization (PLM) is implemented for this system. Detailed analyses andmore »simulation results obtained from MATLAB/Simulink are given to prove the effectiveness of the proposed control techniques.« less
  5. Electric bikes have emerged as a popular form of transportation for short trips in dense urban areas and are being increasingly adopted by bike share programs for easy accessibility to riders. Motivated by the rising popularity of electric bikes, a form of an electric vehicle, we study the research question of how to design a zero-carbon electric bike share system. Specifically we study the challenges in designing solar charging stations for electric bike systems that enable either net-zero or a fully zero-carbon operation. We design a prototype two bike solar charging station to demonstrate the feasibility of our approach. Usingmore »insights and data from our prototype solar charging station, we then conduct a data driven analysis of the costs and benefits of converting an entire bike system into one powered using solar charging stations. Using empirical analysis, we determine the panel and battery capacity for each station, and perform a feasibility evaluation of the system using 8 months of ridership data. Our results show that equipping each bike station with a single grid-tied solar panel is adequate to meet the annual charging demand from electric bikes and achieve net-zero operation using net-metering. For an off-grid setup, our analysis shows that a bike station needs twice as many solar panels, on average, along with a 1.8kWh battery, with the busiest bike station needing 6× more solar capacity than in the net-metering case. Our analysis also reveals a tradeoff between the array size and the battery size needed to achieve true-zero carbon operation for the electric bike share system.« less