skip to main content


Title: A window to the world of global insect declines: Moth biodiversity trends are complex and heterogeneous

Moths are the most taxonomically and ecologically diverse insect taxon for which there exist considerable time-series abundance data. There is an alarming record of decreases in moth abundance and diversity from across Europe, with rates varying markedly among and within regions. Recent reports from Costa Rica reveal steep cross-lineage declines of caterpillars, while other sites (Ecuador and Arizona, reported here) show no or only modest long-term decreases over the past two decades. Rates of decline for dietary and ecological specialists are steeper than those for ecologically generalized taxa. Additional traits commonly associated with elevated risks include large wingspans, small geographic ranges, low dispersal ability, and univoltinism; taxa associated with grasslands, aridlands, and nutrient-poor habitats also appear to be at higher risk. In temperate areas, many moth taxa limited historically by abiotic factors are increasing in abundance and range. We regard the most important continental-scale stressors to include reductions in habitat quality and quantity resulting from land-use change and climate change and, to a lesser extent, atmospheric nitrification and introduced species. Site-specific stressors include pesticide use and light pollution. Our assessment of global macrolepidopteran population trends includes numerous cases of both region-wide and local losses and studies that report no declines. Spatial variation of reported losses suggests that multiple stressors are in play. With the exception of recent reports from Costa Rica, the most severe examples of moth declines are from Northern Hemisphere regions of high human-population density and intensive agriculture.

 
more » « less
NSF-PAR ID:
10209602
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
118
Issue:
2
ISSN:
0027-8424
Page Range / eLocation ID:
Article No. e2002549117
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Background Hydrological impacts on aquatic biota have been assessed in numerous empirical studies. Aquatic insects are severely affected by population declines and consequent diversity loss. However, many uncertainties remain regarding the effects of hydrology on insect production and the consequences of energy transfer to the terrestrial ecosystem. Likewise, sublethal effects on insect morphology remain poorly quantified in highly variable environments. Here, we characterized monthly fluctuation in benthic and emerged biomass of Ephemeroptera in a tropical lowland stream. We quantified the proportion of mayfly production that emerges into the riparian forest. We also examined the potential morphological changes in Farrodes caribbianus (the most abundant mayfly in our samples) due to environmental stress. Methods We collected mayflies (nymphs and adults) in a first-order stream in Costa Rica. We compared benthic and adult biomass from two years’ worth of samples, collected with a core sampler (0.006 m 2 ) and a 2 m 2 -emergence trap. The relationship between emergence and annual secondary production (E/P) was used to estimate the Ephemeroptera production that emerged as adults. A model selection approach was used to determine the relationship between environmental variables that were collected monthly and the emergent biomass. To determine potential departures from perfect bilateral symmetry, we evaluated the symmetry of two morphological traits (forceps and forewing) of F. caribbianus adults. We used Spearman’s rank correlation coefficients (ρ) to examine potential changes in adult body length as a possible response to environmental stress. Results Benthic biomass was variable, with peaks throughout the study period. However, peaks in benthic biomass did not lead to increases in mayfly emergence, which remained stable over time. Relatively constant mayfly emergence suggests that they were aseasonal in tropical lowland streams. Our E/P estimate indicated that approximately 39% and 20% (for 2002 and 2003, respectively) of the nymph production emerged as adults. Our estimated proportion of mayfly production transferred to terrestrial ecosystems was high relative to reports from temperate regions. We observed a strong negative response of F . caribbianus body length to increased hydrology (Spearman: ρ = −0.51, p < 0.001), while slight departures from perfect symmetry were observed in all traits. Conclusion Our two years study demonstrates that there was large temporal variability in mayfly biomass that was unrelated to hydrological fluctuations, but potentially related to trophic interactions (e.g., fish predation). Body length was a good indicator of environmental stress, which could have severe associated costs for mayfly fitness in ecosystems with high temporal variation. Our results highlight the complex ecological and evolutionary dynamics of tropical aquatic insects, and the intricate connection between aquatic and terrestrial ecosystems. 
    more » « less
  2. This study integrates diatom analysis with existing records of pollen, charcoal, elemental composition, and stable light isotopes to expand upon the 4200-year history of human activity and climate change from Laguna Los Mangos in southern Pacific Costa Rica. We counted diatoms in peroxide-treated samples and analyzed community composition using cluster analysis, revealing four distinct assemblage zones with diatom variability most closely correlated with phosphorus, titanium, and organic content. The earliest assemblage (Zone D, 4150–3430 cal yr BP) was dominated by Encyonema silesiacum and Nitzschia incognita and aligned with a period of deforestation, erosion, and abundant macrophytes. Gomphonema affine proliferated in Zone C (3430–2450 cal yr BP), reflecting increased pH and productivity likely caused by agriculture-induced nutrient loading. We attributed the preservation gap from 3290 to 2970 cal yr BP in Zone C to silica depletion and erosional deposition that induced decline in diatom abundance by diluting valve concentrations in lake sediments. Nitzschia incognita and G. affine became the dominant taxa in Zone B (2450–1400 cal yr BP), likely reflecting eutrophy, increasing conductivity, and drying climate. Dominance of Diadesmis confervacea indicated reduced lake level in Zone A (1400 cal yr BP–modern) at the onset of the Terminal Classic Drought (TCD). A hiatus in the record indicates lake desiccation from 950 to 450 cal yr BP. During the Little Ice Age (LIA), diatoms reflect conditions similar to Zone B indicating increased lake level, circumneutral pH, and eutrophy. Refilling of the lake indicates increased precipitation during the LIA despite evidence of severe regional drought reported at other sites. Variable precipitation during this period likely resulted from the combined effects of Spanish contact, agricultural collapse, forest recovery, and shifts in Atlantic and Pacific climate forcing mechanisms. Overall, the Los Mangos diatom record reflects shallow, slightly alkaline, eutrophic conditions influenced by nutrient enrichment, erosion, and deforestation associated with maize agriculture.

     
    more » « less
  3. The importance of fish consumption as the primary pathway of human exposure to mercury and the establishment of fish consumption advisories to protect human health have led to large fish tissue monitoring programs worldwide. Data on fish tissue mercury concentrations collected by state, tribal, and provincial governments via contaminant monitoring programs have been compiled into large data bases by the U.S. Environmental Protection Agency’s Great Lakes National Monitoring Program Office (GLNPO), the Ontario Ministry of the Environment’s Fish Contaminants Monitoring and Surveillance Program (FMSP), and many others. These data have been used by a wide range of governmental and academic investigators worldwide to examine long-term and recent trends in fish tissue mercury concentrations. The largest component of the trend literature is for North American freshwater species important in recreational fisheries. This review of temporal trends in fish tissue mercury concentrations focused on published results from freshwater fisheries of North America as well as marine fisheries worldwide. Trends in fish tissue mercury concentrations in North American lakes with marked overall decreases were reported over the period 1972–2016. These trends are consistent with reported mercury emission declines as well as trends in wet deposition across the U.S. and Canada. More recently, a leveling-off in the rate of decreases or increases in fish tissue mercury concentrations has been reported. Increased emissions of mercury from global sources beginning between 1990 and 1995, despite a decrease in North American emissions, have been advanced as an explanation for the observed changes in fish tissue trends. In addition to increased atmospheric deposition, the other factors identified to explain the observed mercury increases in the affected fish species include a systematic shift in the food-web structure with the introduction of non-native species, creating a new or expanding role for sediments as a net source for mercury. The influences of climate change have also been identified as contributing factors, including considerations such as increases in temperature (resulting in metabolic changes and higher uptake rates of methylmercury), increased rainfall intensity and runoff (hydrologic export of organic matter carrying HgII from watersheds to surface water), and water level fluctuations that alter either the methylation of mercury or the mobilization of monomethylmercury. The primary source of mercury exposure in the human diet in North America is from the commercial fish and seafood market which is dominated (>90%) by marine species. However, very little information is available on mercury trends in marine fisheries. Most of the data used in the published marine trend studies are assembled from earlier reports. The data collection efforts are generally intermittent, and the spatial and fish-size distribution of the target species vary widely. As a result, convincing evidence for the existence of fish tissue mercury trends in marine fish is generally lacking. However, there is some evidence from sampling of large, longlived commercially-important fish showing both lower mercury concentrations in the North Atlantic in response to reduced anthropogenic mercury emission rates in North America and increases in fish tissue mercury concentrations over time in the North Pacific in response to increased mercury loading. 
    more » « less
  4. Abstract Motivation

    Biodiversity in many areas is rapidly declining because of global change. As such, there is an urgent need for new tools and strategies to help identify, monitor and conserve biodiversity hotspots. This is especially true for frugivores, species consuming fruit, because of their important role in seed dispersal and maintenance of forest structure and health. One way to identify these areas is by quantifying functional diversity, which measures the unique roles of species within a community and is valuable for conservation because of its relationship with ecosystem functioning. Unfortunately, the functional trait information required for these studies can be sparse for certain taxa and specific traits and difficult to harmonize across disparate data sources, especially in biodiversity hotspots. To help fill this need, we compiled Frugivoria, a trait database containing ecological, life‐history, morphological and geographical traits for mammals and birds exhibiting frugivory. Frugivoria encompasses species in contiguous moist montane forests and adjacent moist lowland forests of Central and South America—the latter specifically focusing on the Andean states. Compared with existing trait databases, Frugivoria harmonizes existing trait databases, adds new traits, extends traits originally only available for mammals to birds also and fills gaps in trait categories from other databases. Furthermore, we create a cross‐taxa subset of shared traits to aid in analysis of mammals and birds. In total, Frugivoria adds 8662 new trait values for mammals and 14,999 for birds and includes a total of 45,216 trait entries with only 11.37% being imputed. Frugivoria also contains an open workflow that harmonizes trait and taxonomic data from disparate sources and enables users to analyse traits in space. As such, this open‐access database, which aligns with FAIR data principles, fills a major knowledge gap, enabling more comprehensive trait‐based studies of species in this ecologically important region.

    Main Types of Variable Contained

    Ecological, life‐history, morphological and geographical traits.

    Spatial Location and Grain

    Neotropical countries (Mexico, Guatemala, Costa Rica, Panama, El Salvador, Belize, Nicaragua, Ecuador, Colombia, Peru, Bolivia, Argentina, Venezuela and Chile) with contiguous montane regions.

    Time Period and Grain

    IUCN spatial data: obtained February 2023, spanning range maps collated from 1998 to 2022. IUCN species data: obtained June 2019–September 2022. Newly included traits: span 1924 to 2023.

    Major Taxa and Level of Measurement

    Classes Mammalia and Aves; 40,074 species‐level traits; 5142 imputed traits for 1733 species (mammals: 582; birds: 1147) and 16 sub‐species (mammals).

    Software Format

    .csv; R.

     
    more » « less
  5. Powell, Roger (Ed.)
    Abstract Quaternary climatic oscillations affected species distributions worldwide, creating cycles of connectivity and isolation that impacted population demography and promoted lineage divergence. These effects have been well studied in temperate regions. Taxa inhabiting mesic montane habitats in tropical ecosystems show high levels of endemism and diversification in the distinct mountain ranges they inhabit; such a pattern has commonly been ascribed to past climatic oscillations, but few phylogeographic studies have tested this hypothesis. Here, we combine ecological niche models of species distributions with molecular data to study phylogeographic patterns in two rodents endemic to the highlands of Costa Rica and western Panama (Reithrodontomys creper and Nephelomys devius). In so doing, we apply a novel approach that incorporates a basic ecological principle: the expected positive relationship between environmental suitability and population abundance. Specifically, we use niche models to predict potential patterns of population connectivity and stability of different suitability levels during climatic extremes of the last glacial–interglacial cycle; we then test these predictions with population genetic analyses of a mitochondrial and a nuclear marker. The detailed predictions arising from the different levels of suitability were moderately to highly congruent with the molecular data depending on the species. Overall, results suggest that in these tropical montane ecosystems, cycles of population connectivity and isolation followed a pattern opposite to that typically described for temperate or lowland tropical ecosystems: namely, higher connectivity during the colder glacials, with isolation in montane refugia during the interglacials, including today. Nevertheless, the individualistic patterns for each species indicate a potentially wide gamut of phylogeographic histories reflecting particularities of their niches. Taken together, this study illustrates how phylogeographic inferences may benefit from niche model outputs that provide more detailed predictions of connectivity and finer characterizations of potential refugia through time. 
    more » « less