skip to main content


Title: Synthesis, Spectroscopic Characterization and Applications of Tin Dioxide
Metal oxides are useful for the detection and sensing of combustible and toxic gases, and for use in lithium batteries and solar cells. The present study focuses on the spectroscopic investigation of commercial and in-house laboratory synthesized tetragonal tin dioxide (SnO2), aimed at studying its physical and chemical properties at nanoscale levels and in bulk. We have investigated the pure powder form and thin films prepared on two different types of substrate, silicon and UV-Quartz, each with five different thicknesses (i.e. 41, 78, 96.5, 373, and 908 nm). Raman spectroscopy with two different laser excitation wavelengths, namely 780 and 532 nm, has been used to investigate the various SnO2 vibrational modes. Thermal effects on the primary vibrational features in the Raman spectra have been studied in the range 30–170 °C. X-ray diffraction (XRD) spectra have been recorded to confirm the rutile structure of tin dioxide and to obtain information on the spherical grain particle size of SnO2 with EDS analysis for the thin film samples. Scanning Electron Microscope (SEM) images have been recorded in order to understand the morphology of the particles of SnO2 at the nanoscale level. In addition, FT-IR spectra have been obtained to study the IR-active vibrational modes for the bulk and thin film samples on the two substrates. Moreover, UV-VIS spectra have been employed to determine the energy band gap for the SnO2 film samples by an efficient process facilitated by a Tauc plot technique utilizing an in-house developed python script.  more » « less
Award ID(s):
1659224
NSF-PAR ID:
10209713
Author(s) / Creator(s):
; ; ;
Editor(s):
Mubarak, Nabisab M.; Walvekar, Rashmi; Arshid, Numan; and Khalid, Mohammad
Date Published:
Journal Name:
Chapter in Book: Contemporary Nanomaterials in Material Engineering Applications
Page Range / eLocation ID:
285-316
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Powders and films composed of tin dioxide (SnO2) are promising candidates for a variety of high-impact applications, and despite the material’s prevalence in such studies, it remains of high importance that commercially available materials meet the quality demands of the industries that these materials would most benefit. Imaging techniques, such as scanning electron microscopy (SEM), atomic force microscopy (AFM), were used in conjunction with Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) to assess the quality of a variety of samples, such as powder and thin film on quartz with thicknesses of 41 nm, 78 nm, 97 nm, 373 nm, and 908 nm. In this study, the dependencies of the corresponding Raman, XPS, and SEM analysis results on properties of the samples, like the thickness and form (powder versus film) are determined. The outcomes achieved can be regarded as a guide for performing quality checks of such products, and as reference to evaluate commercially available samples. 
    more » « less
  2. Multilayered thermoelectric Sn/Sn+SnO2 thin films were prepared using KJL DC/RF magnetron sputtering system under Ar gas plasma on the SiO2 substrates. The thicknesses of the fabricated thin films were found using Filmetrics UV thickness measurement system. The fabricated thin films were annealed at different temperatures for one hour to tailor the thermoelectric properties. In this study, unannealed, annealed at 150 and 300 °C samples were characterized using Thermo Fisher XPS system brought to the Alabama A&M University by the NSF-MRI support. X-ray Photoelectron Spectroscopy (XPS), also known as Electron Spectroscopy for Chemical Analysis (ESCA) is a type of analysis used for characterization of various surface materials. XPS is mostly known for the characterization of thin films - which are coatings that have been deposited onto a substrate and may be comprised of many different materials to alter or enhance the substrate’s performance. XPS analysis provides information for composition, chemical states, depth profile, imaging and thickness of thin film. This paper focuses on the application of XPS techniques in thin film research for Sn/Sn+SnO2 multilayered thermoelectric system and SiO2 substrates annealed at different temperatures. Since SiO2 substrates were used during the deposition of the multilayer thin films, we would like to perform detailed XPS studies on the SiO2 substrates. SiO2 substrates is being used with many researchers, this manuscript will be good reference for the researchers using SiO2 substrates. Thermal treatment of the substrates and the multilayered thin films has caused some changes of the XPS characterization including binding energy, depth profile, peak value and FWHM. The treatment effects were discussed and compared to each other. 
    more » « less
  3. Abstract

    Infrared (IR) and Raman spectroscopic features of silicate glasses are often interpreted based on the analogy with those of smaller molecules, molecular clusters, or crystalline counterparts; this study tests the accuracy and validity of these widely cited peak assignment schemes by comparing vibrational spectral features with bond parameters of the glass network created by molecular dynamics (MD) simulations. A series of sodium silicate glasses with compositions of [Na2O]x[Al2O3]2[SiO2]98−xwithx = 7, 12, 17, and 22 were synthesized and analyzed with IR and Raman. A silica glass substrate and a crystalline quartz were also analyzed for comparison. Glass structures with the same compositions were generated with MD simulations using three types of potentials: fixed partial charge pairwise (Teter), partial diffuse charge potential (MGFF), and bond order‐based charge transfer potential (ReaxFF). The comparison of simulated and experimental IR spectra showed that, among these three potentials tested, ReaxFF reproduces the concentration dependence of spectral features closest to the experimentally observed trend. Thus, the bond length and angle distributions as well as Si–Qnspecies and ring size distributions of silica and sodium silicate glasses were obtained from ReaxFF‐MD simulations and further compared with the peak assignment or deconvolution schemes—which have been widely used since 1970s and 1980s—(a) correlation between the IR peak position in the Si–O stretch region (1050‐1120 cm−1) and the Si–O–Si bond angle; (b) deconvolution of the Raman bands in the Si–O stretch region with theQnspeciation; and (c) assignment of the Raman bands in the 420‐600 cm−1region to the bending modes of (SiO)nrings with different sizes (typically, n = 3‐6). The comparisons showed that none of these widely used methods is congruent with the bond parameters or structures of silicate glass networks produced via ReaxFF‐MD simulations. This finding invokes that the adequacy of these spectral interpretation methods must be questioned. Alternative interpretations are proposed, which are to be tested independently in future studies.

     
    more » « less
  4. Fullertubes are tubular fullerenes with nanotube-like middle section and fullerene-like endcaps. To understand how this intermediate form between spherical fullerenes and nanotubes is reflected in the vibrational modes, we performed comprehensive studies of IR and Raman spectra of fullertubes C90-D5h, C96-D3d, and C100-D5d. An excellent agreement between experimental and DFT-computed spectra enabled a detailed vibrational assignment and allowed an analysis of the localization degree of the vibrational modes in different parts of fullertubes. Projection analysis was performed to establish an exact numerical correspondence between vibrations of the belt midsection and fullerene headcaps to the modes of nanotubes and fullerene C60-Ih. As a result, we could not only identify fullerene-like and CNT-like vibrations of fullertubes, but also trace their origin in specific vibrational modes of CNT and C60-Ih. IR spectra were found to be dominated by vibrations of fullerene-like caps resembling IR-active modes of C60-Ih, whereas in Raman spectra both caps and belt vibrations are found to be equally active. Unlike the resonance Raman spectra of CNTs, in which only two single-phonon bands are detected, the Raman spectra of fullertubes exhibit several CNT-like vibrations and thus provide additional information on nanotube phonons. 
    more » « less
  5. Abstract

    Vibrational spectroscopy is a very suitable tool for investigating the plant cell wall in situ with almost no sample preparation. The structural information of all different constituents is contained in a single spectrum. Interpretation therefore heavily relies on reference spectra and understanding of the vibrational behavior of the components under study. For the first time, we show infrared (IR) and Raman spectra of dibenzodioxocin (DBDO), an important lignin substructure. A detailed vibrational assignment of the molecule, based on quantum chemical computations, is given in the Supporting Information; the main results are found in the paper. Furthermore, we show IR and Raman spectra of synthetic guaiacyl lignin (dehydrogenation polymer—G‐DHP). Raman spectra of DBDO and G‐DHP both differ with respect to the excitation wavelength and therefore reveal different features of the substructure/polymer. This study confirms the idea previously put forward that Raman at 532 nm selectively probes end groups of lignin, whereas Raman at 785 nm and IR seem to represent the majority of lignin substructures.

     
    more » « less