skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Performative Porosity – adaptive infills for concrete parts
This research investigates the design of structurally performant, lightweight architectural elements produced through concrete 3D printing (C3DP). Traditionally, concrete requires dense and sturdy formwork, whose production adds significantly to the total cost and results in massive and heavy parts after demolding. C3DP offers the unique opportunity to both eliminate the need for formwork and to create lighter parts by introducing internal voids and cavities. The advent of additive manufacturing in a broad range of scales, materials, industries, and applications, led to increased interest and intense research into different types of porous structures, their geometry, and structural performance under various boundary conditions. Precise control over the sparse distribution of material allows not only for parts with similar strength at reduced mass but even for modifications of mechanical properties, like turning brittle materials into elastic or shock-absorbent ones. While with powder-based additive manufacturing processes like metal 3D printing, truss-based lattices have become very popular for the light-weighting of parts or to provide tissue growth scaffolds for medical implants, their geometry – a sparse space frame resulting in numerous individual contour islands and accentuated overhangs – cannot as easily be produced by C3DP, which is based on a continuous material extrusion. Alternative types of micro-structures, so-called triply periodic minimal surfaces (TPMS), are better suited for this process as they are, as their name suggests, consisting of one continuous surface dividing space into two separate but interwoven subspaces. TPMS are therefore very popular for the efficient design of heat exchangers. We develop and present a continuous and integrated workflow, in which the architectural elements and their structural requirements are designed through transitioning back and forth between the force and the form diagram using 3D graphic statics [1]. The members and their topology from the abstract graph of the conceptual form diagram are seamlessly connected to the volumetric modeling (VM) framework, responsible for the definition of the part geometry [2]. VM represents form assigned distance functions (SDF) and can easily handle complex topologies and flawless Boolean operations of not only the outer shell geometry but also the internal micro-structural infill patterns (Fig. 1, a). In an iterative feedback loop, the infill can be further optimized to leave the material only along certain internal stress trajectories (force flows). This functional grading controlling the relative density is done based on the FE analysis results. The stress distribution is thereby defined as a three-dimensional field (Fig. 1, b). Its values can factor into the SDF equation and be used to modify the wavelength (periodicity) of the TPMS, the local thickness of the surface shell, the solid to void fraction by shifting the threshold iso-value or even the alignment and orientation of the unit cells (Fig. 1, c). They can be arranged in an orthogonal, polar- or even spherical coordinate system to optimally adapt to structural necessities. The TPMS pattern can also gradually transition from one type into another type along the gradient of a spatial function.  more » « less
Award ID(s):
1944691
PAR ID:
10209908
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International Association of Shell and Spatial Structures
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Gerardo_Oliva, J; Ignacio_del_Cueto, J; Drago, E (Ed.)
    This paper directly links the abstract geometry of structural form-finding to the fabrication-aware design of discrete shells and spatial structures for 3D concrete printing through a bidirectional approach, where it creates surface-toolpath twins for the components, optimizing the buildability of the parts and their surface quality. The design-to-production process of efficient structural systems for 3D printing is often a top-down unidirectional process involving form-finding, segmentation, and slicing, where results face printability challenges due to incompatibility between the initial geometry and the printing system, as well as material constraints. We introduce surface-toolpath twins that can be interconverted and synchronized through efficient slicing and surface reconstruction algorithms to allow the combination of optimizations and modifications on either part of the twin in flexible orders. We provide two core methods for fabrication rationalization: (1) global buildability optimization on the surface mesh by normal-driven shape stylization and (2) local surface quality optimization on toolpath curves through intra-layer iterative adjustments. The result is a bidirectional design-to-production process where one can plug and play different form-finding results, assess and optimize their fabrication schemes, or leverage knowledge in fabrication design, model toolpath curves as sections, reconstruct surfaces, and merge them into form-finding and segmentation in an inverse way. The proposed framework enables the integration of form-finding expertise with fabrication-oriented design, allowing the realization of spatial shell structures with complex topologies or extreme geometrical features through 3D concrete printing. 
    more » « less
  2. Anisotropy in additive manufacturing (AM), particularly in the material extrusion process, plays a crucial role in determining the actual structural performance, including the stiffness and strength of the printed parts. Unless accounted for, anisotropy can compromise the objective performance of topology-optimized structures and allow premature failures for stress-sensitive design domains. This study harnesses process-induced anisotropy in material extrusion-based 3D printing to design and fabricate stiff, strong, and lightweight structures using a two-step framework. First, an AM-oriented anisotropic strength-based topology optimization formulation optimizes the structural geometry and infill orientations, while assuming both anisotropic (i.e., transversely isotropic) and isotropic infill types as candidate material phases. The dissimilar stiffness and strength interpolation schemes in the formulation allow for the optimized allocation of anisotropic and isotropic material phases in the design domain while satisfying their respective Tsai–Wu and von Mises stress constraints. Second, a suitable fabrication methodology realizes anisotropic and isotropic material phases with appropriate infill density, controlled print path (i.e., infill directions), and strong interfaces of dissimilar material phases. Experimental investigations show up to 37% improved stiffness and 100% improved strength per mass for the optimized and fabricated structures. The anisotropic strength-based optimization improves load-carrying capacity by simultaneous infill alignment along the stress paths and topological adaptation in response to high stress concentration. The adopted interface fabrication methodology strengthens comparatively weaker anisotropic joints with minimal additional material usage and multi-axial infill patterns. Furthermore, numerically predicted failure locations agree with experimental observations. The demonstrated framework is general and can potentially be adopted for other additive manufacturing processes that exhibit anisotropy, such as fiber composites. 
    more » « less
  3. Abstract Swarm manufacturing is an emerging manufacturing paradigm that employs a heterogeneous swarm of robots to accomplish complex hybrid manufacturing tasks. Cooperative 3D printing (C3DP), a specialized form of swarm manufacturing, enables multiple printers to collaboratively produce large-scale parts, addressing key tradeoffs in additive manufacturing, such as size, speed, quality, and cost. A fundamental challenge in C3DP is ensuring collision-free, time-optimal printing in a shared workspace. This is a complex problem that can be influenced by factors such as the number of printers, part geometry, printer positioning, mobility, and kinematics. In this article, we present SafeZone*, a collision-free and scalable C3DP framework that optimizes printing time by co-considering the geometry (area and shape) and topology (space-connectivity) of a shared workspace during layer partitioning. We first establish a conceptual framework to mathematically represent the topology of a layer through partition graphs. Then, we use a Voronoi tessellation within a constrained optimization framework to control the partition graph and minimize makespan. The Voronoi sites are associated with printer locations, allowing the framework to integrate physical constraints and facilitating solutions for systems with robotic manipulators. Physical testing in a four-printer scenario with robotic arms confirms that SafeZone* enables collision-free printing, resulting in a printing time reduction of 44.63% when compared to the single-printer scenario. Finally, numerical studies reveal trends in the optimal solutions concerning the chromatic number of their resulting partition graphs and the distribution of the printing areas among printers. 
    more » « less
  4. Abstract Swarm manufacturing (SM) is an emerging manufacturing paradigm that employs a heterogeneous swarm of robots to accomplish complex hybrid manufacturing tasks. Cooperative 3D Printing (C3DP), a special form of swarm manufacturing, uses multiple printers to print large-scale parts cooperatively and aims to tackle key challenges in the additive manufacturing industry, such as trade-offs among size, speed, quality, and cost. A fundamental challenge in C3DP is how to achieve collision-free, time-efficient printing when multiple printers operate in a shared workspace. This is a complex problem since the solution may depend on a myriad of factors, such as the number of printers, part geometry, printer positioning, mobility, and kinematics, or whether the printing path pre-determined. In this paper, we present SafeZone, a collision-free and scalable C3DP framework that aims to minimize printing time by considering both the geometry and topology (space-connectivity) of the resulting workspace when segmenting the part layer. To achieve this, we use a guided Voronoi tessellation that can only produce degree-3 partitions, which we show to have optimal scheduling properties based on the chromatic number of the resulting partition graph. The sites of the Voronoi tessellation are constrained to only lie on the boundary of their convex hull, thus facilitating collision-free operation in C3DP systems with robotic arms. We demonstrate through physical testing in a 4-printer scenario with SCARA arms that SafeZone can produce collision-free prints, resulting in a printing time reduction of 44.63% when compared to the single-printer scenario. Finally, we show how the partition created by our methodology has a printing time reduction of 22.83% when compared to a naive choice which does not consider workspace topology. 
    more » « less
  5. Construction 3D Printing (C3DP) with sulfur concrete holds great potential for sustainable construction on Earth and beyond. However, a key challenge is optimizing the thermal C3DP process to minimize layer deformations while enhancing interlayer adhesion for improved mechanical strength. To tackle this challenge, this paper presents a physics-based model of heat transfer within a 3D-printed sulfur concrete structure. Numerical implementations of the model are proposed for 3D and 2D structures in Cartesian coordinates. Upon calibration, the model estimates the spatiotemporal distribution of the temperature within the structure based on thermal properties, printing parameters, and environmental conditions. The model is calibrated using experimental data, where the effect of printing parameters is analyzed, and is then utilized to simulate multiple terrestrial and Martian construction scenarios. It identifies a range of printing speeds and interlayer delays that optimize extrudate properties, while also enabling automated control of the thermal C3DP process for optimal performance. 
    more » « less