skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Title: Performative Porosity – adaptive infills for concrete parts
This research investigates the design of structurally performant, lightweight architectural elements produced through concrete 3D printing (C3DP). Traditionally, concrete requires dense and sturdy formwork, whose production adds significantly to the total cost and results in massive and heavy parts after demolding. C3DP offers the unique opportunity to both eliminate the need for formwork and to create lighter parts by introducing internal voids and cavities. The advent of additive manufacturing in a broad range of scales, materials, industries, and applications, led to increased interest and intense research into different types of porous structures, their geometry, and structural performance under various boundary conditions. Precise control over the sparse distribution of material allows not only for parts with similar strength at reduced mass but even for modifications of mechanical properties, like turning brittle materials into elastic or shock-absorbent ones. While with powder-based additive manufacturing processes like metal 3D printing, truss-based lattices have become very popular for the light-weighting of parts or to provide tissue growth scaffolds for medical implants, their geometry – a sparse space frame resulting in numerous individual contour islands and accentuated overhangs – cannot as easily be produced by C3DP, which is based on a continuous material extrusion. Alternative types of micro-structures, so-called triply periodic minimal surfaces (TPMS), are better suited for this process as they are, as their name suggests, consisting of one continuous surface dividing space into two separate but interwoven subspaces. TPMS are therefore very popular for the efficient design of heat exchangers. We develop and present a continuous and integrated workflow, in which the architectural elements and their structural requirements are designed through transitioning back and forth between the force and the form diagram using 3D graphic statics [1]. The members and their topology from the abstract graph of the conceptual form diagram are seamlessly connected to the volumetric modeling (VM) framework, responsible for the definition of the part geometry [2]. VM represents form assigned distance functions (SDF) and can easily handle complex topologies and flawless Boolean operations of not only the outer shell geometry but also the internal micro-structural infill patterns (Fig. 1, a). In an iterative feedback loop, the infill can be further optimized to leave the material only along certain internal stress trajectories (force flows). This functional grading controlling the relative density is done based on the FE analysis results. The stress distribution is thereby defined as a three-dimensional field (Fig. 1, b). Its values can factor into the SDF equation and be used to modify the wavelength (periodicity) of the TPMS, the local thickness of the surface shell, the solid to void fraction by shifting the threshold iso-value or even the alignment and orientation of the unit cells (Fig. 1, c). They can be arranged in an orthogonal, polar- or even spherical coordinate system to optimally adapt to structural necessities. The TPMS pattern can also gradually transition from one type into another type along the gradient of a spatial function.  more » « less
Award ID(s):
1944691
NSF-PAR ID:
10209908
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International Association of Shell and Spatial Structures
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Anisotropy in additive manufacturing (AM), particularly in the material extrusion process, plays a crucial role in determining the actual structural performance, including the stiffness and strength of the printed parts. Unless accounted for, anisotropy can compromise the objective performance of topology-optimized structures and allow premature failures for stress-sensitive design domains. This study harnesses process-induced anisotropy in material extrusion-based 3D printing to design and fabricate stiff, strong, and lightweight structures using a two-step framework. First, an AM-oriented anisotropic strength-based topology optimization formulation optimizes the structural geometry and infill orientations, while assuming both anisotropic (i.e., transversely isotropic) and isotropic infill types as candidate material phases. The dissimilar stiffness and strength interpolation schemes in the formulation allow for the optimized allocation of anisotropic and isotropic material phases in the design domain while satisfying their respective Tsai–Wu and von Mises stress constraints. Second, a suitable fabrication methodology realizes anisotropic and isotropic material phases with appropriate infill density, controlled print path (i.e., infill directions), and strong interfaces of dissimilar material phases. Experimental investigations show up to 37% improved stiffness and 100% improved strength per mass for the optimized and fabricated structures. The anisotropic strength-based optimization improves load-carrying capacity by simultaneous infill alignment along the stress paths and topological adaptation in response to high stress concentration. The adopted interface fabrication methodology strengthens comparatively weaker anisotropic joints with minimal additional material usage and multi-axial infill patterns. Furthermore, numerically predicted failure locations agree with experimental observations. The demonstrated framework is general and can potentially be adopted for other additive manufacturing processes that exhibit anisotropy, such as fiber composites. 
    more » « less
  2. Because of increased geometric freedom at a widening range of length scales and access to a growing material space, additive manufacturing has spurred renewed interest in topology optimization of parts with spatially varying material properties and structural hierarchy. Simultaneously, a surge of micro/nanoarchitected materials have been demonstrated. Nevertheless, multiscale design and micro/nanoscale additive manufacturing have yet to be sufficiently integrated to achieve free-form, multiscale, biomimetic structures. We unify design and manufacturing of spatially varying, hierarchical structures through a multimicrostructure topology optimization formulation with continuous multimicrostructure embedding. The approach leads to an optimized layout of multiple microstructural materials within an optimized macrostructure geometry, manufactured with continuously graded interfaces. To make the process modular and controllable and to avoid prohibitively expensive surface representations, we embed the microstructures directly into the 3D printer slices. The ideas provide a critical, interdisciplinary link at the convergence of material and structure in optimal design and manufacturing. 
    more » « less
  3. null (Ed.)
    Abstract Cooperative 3D printing (C3DP) is a novel approach to additive manufacturing, where multiple printhead-carrying mobile robots work cooperatively to print the desired part. The core of C3DP is the chunk-based printing strategy in which the desired part is first split into smaller chunks and then the chunks are assigned to individual robots to print and bond. These robots will work simultaneously in a scheduled sequence to print the entire part. Although promising, C3DP lacks a generative approach that enables automatic chunking and scheduling. In this study, we aim to develop a generative approach that can automatically generate different print schedules for a chunked object by exploring a larger solution space that is often beyond the capability of human cognition. The generative approach contains (1) a random generator of diverse print schedules based on an adjacency matrix that represents a directed dependency tree structure of chunks; (2) a set of geometric constraints against which the randomly generated schedules will be checked for validation, and (3) a printing time evaluator for comparing the performance of all valid schedules. We demonstrate the efficacy of the generative approach using two case studies: a large simple rectangular bar and a miniature folding sport utility vehicle (SUV) with more complicated geometry. This study demonstrates that the generative approach can generate a large number of different print schedules for collision-free C3DP, which cannot be explored solely using human heuristics. This generative approach lays the foundation for building the optimization approach of C3DP scheduling. 
    more » « less
  4. Abstract

    Despite the impressive performance of recent marine robots, many of their components are non‐biodegradable or even toxic and may negatively impact sensitive ecosystems. To overcome these limitations, biologically‐sourced hydrogels are a candidate material for marine robotics. Recent advances in embedded 3D printing have expanded the design freedom of hydrogel additive manufacturing. However, 3D printing small‐scale hydrogel‐based actuators remains challenging. In this study, Free form reversible embedding of suspended hydrogels (FRESH) printing is applied to fabricate small‐scale biologically‐derived, marine‐sourced hydraulic actuators by printing thin‐wall structures that are water‐tight and pressurizable. Calcium‐alginate hydrogels are used, a sustainable biomaterial sourced from brown seaweed. This process allows actuators to have complex shapes and internal cavities that are difficult to achieve with traditional fabrication techniques. Furthermore, it demonstrates that fabricated components are biodegradable, safely edible, and digestible by marine organisms. Finally, a reversible chelation‐crosslinking mechanism is implemented to dynamically modify alginate actuators' structural stiffness and morphology. This study expands the possible design space for biodegradable marine robots by improving the manufacturability of complex soft devices using biologically‐sourced materials.

     
    more » « less
  5. Additive manufacturing (AM), also known as three-dimensional (3D) printing, is thriving as an effective and robust method in fabricating architected piezoelectric structures, yet most of the commonly adopted printing techniques often face the inherent speed-accuracy trade-off, limiting their speed in manufacturing sophisticated parts containing micro-/nanoscale features. Herein, stabilized, photo-curable resins comprising chemically functionalized piezoelectric nanoparticles (PiezoNPs) were formulated, from which microscale architected 3D piezoelectric structures were printed continuously via micro continuous liquid interface production ( μ CLIP) at speeds of up to ~60  μ m s -1 , which are more than 10 times faster than the previously reported stereolithography-based works. The 3D-printed functionalized barium titanate (f-BTO) composites reveal a bulk piezoelectric charge constant d 33 of 27.70 pC N -1 with the 30 wt% f-BTO. Moreover, rationally designed lattice structures that manifested enhanced, tailorable piezoelectric sensing performance as well as mechanical flexibility were tested and explored in diverse flexible and wearable self-powered sensing applications, e.g., motion recognition and respiratory monitoring. 
    more » « less