skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bio-inspired photonics – marine hatchetfish camouflage strategies for RF steganography
Camouflage is a strategy that animals utilize for concealment in their habitat, making themselves invisible to their predators and preys. In RF systems, steganography or stealth transmission is the camouflage of information – a technology of hiding and transmitting secret messages in public media. Steganography conceals the secret message in publicly available media such that the eavesdropper or attacker will not be able to tell if there is a secret message to look for. Marine hatchetfish have two effective camouflage skills to help them hide from their predators – silvering and counterillumination. Silvering in marine hatchetfish uses its microstructured skin on its sides to achieve destructive interference at colors that could indicate the presence of the fish, while they also emit light at their bottom part to match its color and intensity to its surrounding, making it invisible from below, referred to as counterillumination. In this work, we borrow the two underwater camouflage strategies from marine hatchetfish, mimic them with photonic phenomena, and apply the camouflage strategies for physical stealth transmission of a 200 MBaud/s 16QAM OFDM secret signal at 5 GHz over a 25-km of optical fiber. The proposed bio-inspired steganography strategies successfully hid the secret signal in plain sight in temporal, RF spectral, and optical spectral domains, by blending in using counterillumination and turning invisible using silvering techniques. The stealth signal can only be retrieved with the precise and correct parameter for constructive interference at the secret signal frequency to unmask the silvering.  more » « less
Award ID(s):
1917043 1653525
PAR ID:
10209924
Author(s) / Creator(s):
;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
29
Issue:
2
ISSN:
1094-4087; OPEXFF
Format(s):
Medium: X Size: Article No. 2587
Size(s):
Article No. 2587
Sponsoring Org:
National Science Foundation
More Like this
  1. Billions of animals living in open water, or pelagic habitats, can disappear into their surroundings using a variety of light-manipulating camouflage solutions. These include transparent, antireflection, and glittery reflective structures. Although such photonic camouflage allows these animals to vanish into their surroundings, they still need to eat (and avoid being eaten), which requires the ability to detect their invisible neighbors. Thus, an arms race exists between predators and prey for the ability to see and yet not be seen ( 1 ). Evolutionary tinkering across the diversity of pelagic animals has produced multiple solutions for controlling the transmission, reflection, and detection of light. On page 695 of this issue, Shavit et al. ( 2 ) report the discovery of photonic glass materials that form the basis of sparkly “eyeglitter” in the larvae of pelagic crustaceans and allows for both reflective camouflage and vision. These findings present a mechanism for producing salient, tunable coloration and light manipulation in space-limited tissues. 
    more » « less
  2. MIMO processing enables jammer mitigation through spatial filtering, provided that the receiver knows the spatial signature of the jammer interference. Estimating this signature is easy for barrage jammers that transmit continuously and with static signature, but difficult for more sophisticated jammers: Smart jammers may deliberately suspend transmission when the receiver tries to estimate their spatial signature, they may use time-varying beamforming to continuously change their spatial signature, or they may stay mostly silent and jam only specific instants (e.g., transmission of control signals). To deal with such smart jammers, we propose MASH, the first method that indiscriminately mitigates all types of jammers: Assume that the transmitter and receiver share a common secret. Based on this secret, the transmitter embeds (with a linear time-domain transform) its signal in a secret subspace of a higher-dimensional space. The receiver applies a reciprocal linear transform to the receive signal, which (i) raises the legitimate transmit signal from its secret subspace and (ii) provably transforms any jammer into a barrage jammer, which makes estimation and mitigation via MIMO processing straightforward. We show the efficacy of MASH for data transmission in the massive multi-user MIMO uplink. 
    more » « less
  3. The Optical Network Emulation (ONE) engine is a real-time, multi-container software platform designed to model and emulate open optical transport networks with realistic fidelity. This paper introduces an enhanced version of the ONE engine that integrates a distributed implementation of a Gaussian Noise (GN) model for estimating nonlinear interference (NLI) in wavelength division multiplexing (WDM) systems. The inclusion of the GN model enables more realistic emulation of nonlinear signal degradation across diverse link configurations and operating conditions. The enhanced ONE package is then used to document the model’s impact on system performance under varying transmission conditions, including signal launched power and increased spectral loading. With this upgrade, the ONE engine expands its utility for research, development, and education, providing a scalable and flexible environment for testing physical-layer impairments and control strategies in software-defined optical networks. 
    more » « less
  4. In this paper, we investigate the necessity of finite blocklength codes in distributed transmission of independent message sets over channels with feedback. We provide two examples of three user interference channels with feedback where codes with asymptotically large effective lengths are sub-optimal. As a result, we conclude that coded transmission using finite effective length codes is necessary to achieve optimality. We argue that the sub-optimal performance of large effective length codes is due to their inefficiency in preserving the correlation between the inputs to the distributed terminals in the communication system. This correlation is made available by the presence of feedback at the terminals and is used as a means for coordination between them when using finite effective length coding strategies. 
    more » « less
  5. This paper describes a wireless experimentation framework for studying dynamic spectrum access mechanisms and an experiment that showcases its capabilities. The framework was built on COSMOS, an advanced wireless testbed designed to support real-world experimentation of next generation wireless technologies and applications. Our deployed framework supports experimentation over a large number of wireless networks, with a PUB-SUB based network interaction structure, based on the Collaborative Intelligent Radio Networks (CIRN) Interaction Language (CIL) developed by DARPA for the Spectrum Collaboration Challenge (SC2). As such, it enables interaction and message exchanges between the networks for the purposes of coordinating spectrum use. For our experiment, the message exchanges are aimed primarily for, but not limited to, Spectrum Consumption Model (SCM) messages. RF devices/systems use SCM messages which contain detailed information about their wireless transmission characteristics (i.e., spectrum mask, frequency, bandwidth, power and location) to determine their operational compatibility (non-interference) with prior transmitters and receivers, and to dynamically determine spectrum use characteristics for their own transmissions. 
    more » « less