Camouflage is a strategy that animals utilize for concealment in their habitat, making themselves invisible to their predators and preys. In RF systems, steganography or stealth transmission is the camouflage of information – a technology of hiding and transmitting secret messages in public media. Steganography conceals the secret message in publicly available media such that the eavesdropper or attacker will not be able to tell if there is a secret message to look for. Marine hatchetfish have two effective camouflage skills to help them hide from their predators – silvering and counterillumination. Silvering in marine hatchetfish uses its microstructured skin on its sides to achieve destructive interference at colors that could indicate the presence of the fish, while they also emit light at their bottom part to match its color and intensity to its surrounding, making it invisible from below, referred to as counterillumination. In this work, we borrow the two underwater camouflage strategies from marine hatchetfish, mimic them with photonic phenomena, and apply the camouflage strategies for physical stealth transmission of a 200 MBaud/s 16QAM OFDM secret signal at 5 GHz over a 25-km of optical fiber. The proposed bio-inspired steganography strategies successfully hid the secret signal in plain sight in temporal, RF spectral, and optical spectral domains, by blending in using counterillumination and turning invisible using silvering techniques. The stealth signal can only be retrieved with the precise and correct parameter for constructive interference at the secret signal frequency to unmask the silvering.
more »
« less
Photonic tinkering in the open ocean
Billions of animals living in open water, or pelagic habitats, can disappear into their surroundings using a variety of light-manipulating camouflage solutions. These include transparent, antireflection, and glittery reflective structures. Although such photonic camouflage allows these animals to vanish into their surroundings, they still need to eat (and avoid being eaten), which requires the ability to detect their invisible neighbors. Thus, an arms race exists between predators and prey for the ability to see and yet not be seen ( 1 ). Evolutionary tinkering across the diversity of pelagic animals has produced multiple solutions for controlling the transmission, reflection, and detection of light. On page 695 of this issue, Shavit et al. ( 2 ) report the discovery of photonic glass materials that form the basis of sparkly “eyeglitter” in the larvae of pelagic crustaceans and allows for both reflective camouflage and vision. These findings present a mechanism for producing salient, tunable coloration and light manipulation in space-limited tissues.
more »
« less
- Award ID(s):
- 1738567
- PAR ID:
- 10402486
- Date Published:
- Journal Name:
- Science
- Volume:
- 379
- Issue:
- 6633
- ISSN:
- 0036-8075
- Page Range / eLocation ID:
- 643 to 644
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Recent advancements in wearable photonic sensors have marked a transformative era in healthcare, enabling non‐invasive, real‐time, portable, and personalized medical monitoring. These sensors leverage the unique properties of light toward high‐performance sensing in form factors optimized for real‐world use. Their ability to offer solutions to a broad spectrum of medical challenges – from routine health monitoring to managing chronic conditions, inspires a rapidly growing translational market. This review explores the design and development of wearable photonic sensors toward various healthcare applications. The photonic sensing strategies that power these technologies are first presented, alongside a discussion of the factors that define optimal use‐cases for each approach. The means by which these mechanisms are integrated into wearable formats are then discussed, with considerations toward material selection for comfort and functionality, component fabrication, and power management. Recent developments in the space are detailed, accounting for both physical and chemical stimuli detection through various non‐invasive biofluids. Finally, a comprehensive situational overview identifies critical challenges toward translation, alongside promising solutions. Associated future outlooks detail emerging trends and mechanisms that stand to enable the integration of these technologies into mainstream healthcare practice, toward advancing personalized medicine and improving patient outcomes.more » « less
-
null (Ed.)Abstract A fascinating photonic platform with a small device scale, fast operating speed, as well as low energy consumption is two-dimensional (2D) materials, thanks to their in-plane crystalline structures and out-of-plane quantum confinement. The key to further advancement in this research field is the ability to modify the optical properties of the 2D materials. The modifications typically come from the materials themselves, for example, altering their chemical compositions. This article reviews a comparably less explored but promising means, through engineering the photonic surroundings. Rather than modifying materials themselves, this means manipulates the dielectric and metallic environments, both uniform and nanostructured, that directly interact with the materials. For 2D materials that are only one or a few atoms thick, the interaction with the environment can be remarkably efficient. This review summarizes the three degrees of freedom of this interaction: weak coupling, strong coupling, and multifunctionality. In addition, it reviews a relatively timing concept of engineering that directly applied to the 2D materials by patterning. Benefiting from the burgeoning development of nanophotonics, the engineering of photonic environments provides a versatile and creative methodology of reshaping light–matter interaction in 2D materials.more » « less
-
Major evolutionary transitions, in which animals develop new body plans and adapt to dramatically new habitats and lifestyles, have punctuated the history of life. The origin of cetaceans from land-living mammals is among the most famous of these events. Much earlier, during the Mesozoic Era, many reptile groups also moved from land to water, but these transitions are more poorly understood. We use computed tomography to study changes in the inner ear vestibular system, involved in sensing balance and equilibrium, as one of these groups, extinct crocodile relatives called thalattosuchians, transitioned from terrestrial ancestors into pelagic (open ocean) swimmers. We find that the morphology of the vestibular system corresponds to habitat, with pelagic thalattosuchians exhibiting a more compact labyrinth with wider semicircular canal diameters and an enlarged vestibule, reminiscent of modified and miniaturized labyrinths of other marine reptiles and cetaceans. Pelagic thalattosuchians with modified inner ears were the culmination of an evolutionary trend with a long semiaquatic phase, and their pelagic vestibular systems appeared after the first changes to the postcranial skeleton that enhanced their ability to swim. This is strikingly different from cetaceans, which miniaturized their labyrinths soon after entering the water, without a prolonged semiaquatic stage. Thus, thalattosuchians and cetaceans became secondarily aquatic in different ways and at different paces, showing that there are different routes for the same type of transition.more » « less
-
The deep-sea environment is associated with a wide range of anatomically specialized morphologies allowing camouflage in this low or no light environment. Specialized ultra-black coloration has been documented in the pelican eel, Eurypharynx pelecanoides, but has not been explored in the other largely deep-sea inhabiting pelagic anguilloid eels. Histological examination of the integument revealed a layer of free melanosomes in the superficial dermis consistent with specialized ultra-black camouflage in the swallower eels Saccopharynx, the bobtail snipe eel Cyema, the sawtooth eels Serrivomer, and the snipe eels Avocettina and Nemichthys. The anatomy in these taxa is consistent with the previously described ultra-black morphology, except that Nemichthys, Avocettina, and Serrivomer have both large amounts of free melanosomes and melanophores. Consideration of this morphology in the context of anguilloid eel evolution in the deep-sea environment suggests repeated independent evolution of ultra-black coloration within the anguilloids, and greater development in the taxa more specifically associated with the bathypelagic habitats and the production of bioluminescence.more » « less
An official website of the United States government

