skip to main content


Title: The human endogenous attentional control network includes a ventro-temporal cortical node
Abstract

Endogenous attention is the cognitive function that selects the relevant pieces of sensory information to achieve goals and it is known to be controlled by dorsal fronto-parietal brain areas. Here we expand this notion by identifying a control attention area located in the temporal lobe. By combining a demanding behavioral paradigm with functional neuroimaging and diffusion tractography, we show that like fronto-parietal attentional areas, the human posterior inferotemporal cortex exhibits significant attentional modulatory activity. This area is functionally distinct from surrounding cortical areas, and is directly connected to parietal and frontal attentional regions. These results show that attentional control spans three cortical lobes and overarches large distances through fiber pathways that run orthogonally to the dominant anterior-posterior axes of sensory processing, thus suggesting a different organizing principle for cognitive control.

 
more » « less
Award ID(s):
1912270 1916518 1734853 1636893
NSF-PAR ID:
10210167
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Classical studies of attention have identified areas of parietal and frontal cortex as sources of attentional control. Recently, a ventral region in the macaque temporal cortex, the posterior infero-temporal dorsal area PITd, has been suggested as a third attentional control area. This raises the question of whether and how spatially distant areas coordinate a joint focus of attention. Here we tested the hypothesis that parieto-frontal attention areas and PITd are directly interconnected. By combining functional MRI with ex-vivo high-resolution diffusion MRI, we found that PITd and dorsal attention areas are all directly connected through three specific fascicles. These results ascribe a new function, the communication of attention signals, to two known fiber-bundles, highlight the importance of vertical interactions across the two visual streams, and imply that the control of endogenous attention, hitherto thought to reside in macaque dorsal cortical areas, is exerted by a dorso-ventral network. 
    more » « less
  2. Human childhood is characterized by dramatic changes in the mind and brain. However, little is known about the large-scale intrinsic cortical network changes that occur during childhood because of methodological challenges in scanning young children. Here, we overcome this barrier by using sophisticated acquisition and analysis tools to investigate functional network development in children between the ages of 4 and 10 years (n=92; 50 female, 42 male). At multiple spatial scales, age is positively associated with brain network segregation. At the system level, age was associated with segregation of systems involved in attention from those involved in abstract cognition, and with integration among attentional and perceptual systems. Associations between age and functional connectivity are most pronounced in visual and medial prefrontal cortex, the two ends of a gradient from perceptual, externally oriented cortex to abstract, internally oriented cortex. These findings suggest that both ends of the sensory-association gradient may develop early, in contrast to the classical theories that cortical maturation proceeds from back to front, with sensory areas developing first and association areas developing last. More mature patterns of brain network architecture, controlling for age, were associated with better visuospatial reasoning abilities. Our results suggest that as cortical architecture becomes more specialized, children become more able to reason about the world and their place in it.

    SIGNIFICANCE STATEMENTAnthropologists have called the transition from early to middle childhood the “age of reason”, when children across cultures become more independent. We employ cutting-edge neuroimaging acquisition and analysis approaches to investigate associations between age and functional brain architecture in childhood. Age was positively associated with segregation between cortical systems that process the external world and those that process abstract phenomena like the past, future, and minds of others. Surprisingly, we observed pronounced development at both ends of the sensory-association gradient, challenging the theory that sensory areas develop first and association areas develop last. Our results open new directions for research into how brains reorganize to support rapid gains in cognitive and socioemotional skills as children reach the age of reason.

     
    more » « less
  3. Key points

    Visual attention involves discrete multispectral oscillatory responses in visual and ‘higher‐order’ prefrontal cortices.

    Prefrontal cortex laterality effects during visual selective attention are poorly characterized.

    High‐definition transcranial direct current stimulation dynamically modulated right‐lateralized fronto‐visual theta oscillations compared to those observed in left fronto‐visual pathways.

    Increased connectivity in right fronto‐visual networks after stimulation of the left dorsolateral prefrontal cortex resulted in faster task performance in the context of distractors.

    Our findings show clear laterality effects in theta oscillatory activity along prefrontal–visual cortical pathways during visual selective attention.

    Abstract

    Studies of visual attention have implicated oscillatory activity in the recognition, protection and temporal organization of attended representations in visual cortices. These studies have also shown that higher‐order regions such as the prefrontal cortex are critical to attentional processing, but far less is understood regarding prefrontal laterality differences in attention processing. To examine this, we selectively applied high‐definition transcranial direct current stimulation (HD‐tDCS) to the left or right dorsolateral prefrontal cortex (DLPFC). We predicted that HD‐tDCS of the leftversusright prefrontal cortex would differentially modulate performance on a visual selective attention task, and alter the underlying oscillatory network dynamics. Our randomized crossover design included 27 healthy adults that underwent three separate sessions of HD‐tDCS (sham, left DLPFC and right DLPFC) for 20 min. Following stimulation, participants completed an attention protocol during magnetoencephalography. The resulting oscillatory dynamics were imaged using beamforming, and peak task‐related neural activity was subjected to dynamic functional connectivity analyses to evaluate the impact of stimulation site (i.e. left and right DLPFC) on neural interactions. Our results indicated that HD‐tDCS over the left DLPFC differentially modulated right fronto‐visual functional connectivity within the theta band compared to HD‐tDCS of the right DLPFC and further, specifically modulated the oscillatory response for detecting targets among an array of distractors. Importantly, these findings provide network‐specific insight into the complex oscillatory mechanisms serving visual selective attention.

     
    more » « less
  4. Abstract

    Modulation of vocal pitch is a key speech feature that conveys important linguistic and affective information. Auditory feedback is used to monitor and maintain pitch. We examined induced neural high gamma power (HGP) (65–150 Hz) using magnetoencephalography during pitch feedback control. Participants phonated into a microphone while hearing their auditory feedback through headphones. During each phonation, a single real‐time 400 ms pitch shift was applied to the auditory feedback. Participants compensated by rapidly changing their pitch to oppose the pitch shifts. This behavioral change required coordination of the neural speech motor control network, including integration of auditory and somatosensory feedback to initiate change in motor plans. We found increases in HGP across both hemispheres within 200 ms of pitch shifts, covering left sensory and right premotor, parietal, temporal, and frontal regions, involved in sensory detection and processing of the pitch shift. Later responses to pitch shifts (200–300 ms) were right dominant, in parietal, frontal, and temporal regions. Timing of activity in these regions indicates their role in coordinating motor change and detecting and processing of the sensory consequences of this change. Subtracting out cortical responses during passive listening to recordings of the phonations isolated HGP increases specific to speech production, highlighting right parietal and premotor cortex, and left posterior temporal cortex involvement in the motor response. Correlation of HGP with behavioral compensation demonstrated right frontal region involvement in modulating participant's compensatory response. This study highlights the bihemispheric sensorimotor cortical network involvement in auditory feedback‐based control of vocal pitch.Hum Brain Mapp 37:1474‐1485, 2016. © 2016 Wiley Periodicals, Inc.

     
    more » « less
  5. Observing the actions of others engages a core action observation network (AON) that includes the bilateral inferior frontal cortex (IFC), posterior superior temporal sulcus (pSTS) and inferior parietal lobule (IPL) (Caspers et al., 2010). Each region in the AON has functional properties that are heterogeneous and include representing the perceptual properties of action, predicting action outcomes and making inferences as to the goals of the actor. Critically, recent evidence shows that neural representations within the pSTS are sharpened when attending to the kinematics of the actor, such that the top-down guided attention reshapes underlying neural representations. In this study we evaluate how attention alters network connectivity within the AON as a system. Cues directed participant's attention to the goal, kinematics, or identity depicted in short action animations while brain responses were measured by fMRI. We identified those parcels within the AON with functional connectivity modulated by task. Results show that connectivity between the right pSTS and right IFC, and bilateral extended STS (STS+) were modulated during action observation such that connections were strengthened when the participant was attending to the action than goal. This finding is contrasted by the univariate results, which no univariate modulations in these brain regions except for right IFC. Using the functional networks defined by Yeo et al. (2011), we identified the parcels that are modulated by the attention to consist mainly of the fronto-parietal control network and default mode networks. These results are consistent with models of top-down feedback from executive system in the IFC to pSTS and implicates a right lateralized dual pathway model for action observation when focused on whole-body kinematics. 
    more » « less