skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The human endogenous attentional control network includes a ventro-temporal cortical node
Abstract Endogenous attention is the cognitive function that selects the relevant pieces of sensory information to achieve goals and it is known to be controlled by dorsal fronto-parietal brain areas. Here we expand this notion by identifying a control attention area located in the temporal lobe. By combining a demanding behavioral paradigm with functional neuroimaging and diffusion tractography, we show that like fronto-parietal attentional areas, the human posterior inferotemporal cortex exhibits significant attentional modulatory activity. This area is functionally distinct from surrounding cortical areas, and is directly connected to parietal and frontal attentional regions. These results show that attentional control spans three cortical lobes and overarches large distances through fiber pathways that run orthogonally to the dominant anterior-posterior axes of sensory processing, thus suggesting a different organizing principle for cognitive control.  more » « less
Award ID(s):
1912270 1916518 1734853 1636893
PAR ID:
10210167
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Classical studies of attention have identified areas of parietal and frontal cortex as sources of attentional control. Recently, a ventral region in the macaque temporal cortex, the posterior infero-temporal dorsal area PITd, has been suggested as a third attentional control area. This raises the question of whether and how spatially distant areas coordinate a joint focus of attention. Here we tested the hypothesis that parieto-frontal attention areas and PITd are directly interconnected. By combining functional MRI with ex-vivo high-resolution diffusion MRI, we found that PITd and dorsal attention areas are all directly connected through three specific fascicles. These results ascribe a new function, the communication of attention signals, to two known fiber-bundles, highlight the importance of vertical interactions across the two visual streams, and imply that the control of endogenous attention, hitherto thought to reside in macaque dorsal cortical areas, is exerted by a dorso-ventral network. 
    more » « less
  2. Abstract Processing sensory information, generating perceptions, and shaping behavior engages neural networks in brain areas with highly varied representations, ranging from unimodal sensory cortices to higher-order association areas. In early development, these areas share a common distributed and modular functional organization, but it is not known whether this undergoes a common developmental trajectory, or whether such organization persists only in some brain areas. Here, we examine the development of network organization across diverse cortical regions in ferrets using in vivo wide field calcium imaging of spontaneous activity. In both primary sensory (visual, auditory, and somatosensory) and higher order association (prefrontal and posterior parietal) areas, spontaneous activity remained significantly modular with pronounced millimeter-scale correlations over a 3-wk period spanning eye opening and the transition to externally-driven sensory activity. Over this period, cortical areas exhibited a roughly similar set of developmental changes, along with area-specific differences. Modularity and long-range correlation strength generally decreased with age, along with increases in the dimensionality of activity, although these effects were not uniform across all brain areas. These results indicate an interplay of area-specific factors with a conserved developmental program that maintains modular functional networks, suggesting modular organization may be involved in functional representations in diverse brain areas. 
    more » « less
  3. Abstract Salient objects grab attention because they stand out from their surroundings. Whether this phenomenon is accomplished by bottom-up sensory processing or requires top-down guidance is debated. We tested these alternative hypotheses by measuring how early and in which cortical layer(s) neural spiking distinguished a target from a distractor. We measured synaptic and spiking activity across cortical columns in mid-level area V4 of male macaque monkeys performing visual search for a color singleton. A neural signature of attentional capture was observed in the earliest response in the input layer 4. The magnitude of this response predicted response time and accuracy. Errant behavior followed errant selection. Because this response preceded top-down influences and arose in the cortical layer not targeted by top-down connections, these findings demonstrate that feedforward activation of sensory cortex can underlie attentional priority. 
    more » « less
  4. Gutkin, Boris S. (Ed.)
    Attentional modulation of cortical networks is critical for the cognitive flexibility required to process complex scenes. Current theoretical frameworks for attention are based almost exclusively on studies in visual cortex, where attentional effects are typically modest and excitatory. In contrast, attentional effects in auditory cortex can be large and suppressive. A theoretical framework for explaining attentional effects in auditory cortex is lacking, preventing a broader understanding of cortical mechanisms underlying attention. Here, we present a cortical network model of attention in primary auditory cortex (A1). A key mechanism in our network is attentional inhibitory modulation (AIM) of cortical inhibitory neurons. In this mechanism, top-down inhibitory neurons disinhibit bottom-up cortical circuits, a prominent circuit motif observed in sensory cortex. Our results reveal that the same underlying mechanisms in the AIM network can explain diverse attentional effects on both spatial and frequency tuning in A1. We find that a dominant effect of disinhibition on cortical tuning is suppressive, consistent with experimental observations. Functionally, the AIM network may play a key role in solving the cocktail party problem. We demonstrate how attention can guide the AIM network to monitor an acoustic scene, select a specific target, or switch to a different target, providing flexible outputs for solving the cocktail party problem. 
    more » « less
  5. In order to deal with a complex environment, animals form a diverse range of neural representations that vary across cortical areas, ranging from largely unimodal sensory input to higher-order representations of goals, outcomes, and motivation. The developmental origin of this diversity is currently unclear, as representations could arise through processes that are already area-specific from the earliest developmental stages or alternatively, they could emerge from an initially common functional organization shared across areas. Here, we use spontaneous activity recorded with two-photon and widefield calcium imaging to reveal the functional organization across the early developing cortex in ferrets, a species with a well-characterized columnar organization and modular structure of spontaneous activity in the visual cortex. We find that in animals 7 to 14 d prior to eye-opening and ear canal opening, spontaneous activity in both sensory areas (auditory and somatosensory cortex, A1 and S1, respectively), and association areas (posterior parietal and prefrontal cortex, PPC and PFC, respectively) showed an organized and modular structure that is highly similar to the organization in V1. In all cortical areas, this modular activity was distributed across the cortical surface, forming functional networks that exhibit millimeter-scale correlations. Moreover, this modular structure was evident in highly coherent spontaneous activity at the cellular level, with strong correlations among local populations of neurons apparent in all cortical areas examined. Together, our results demonstrate a common distributed and modular organization across the cortex during early development, suggesting that diverse cortical representations develop initially according to similar design principles. 
    more » « less