Induction heating is one of the cleanest and most efficient methods for heating materials, utilizing electromagnetic fields induced through AC electric current. This article reports an analytical solution for transient heat transfer in a three‐dimensional (3D) cylindrical object under induction heating. A simplified form of Maxwell's equations is solved to determine the heat generation inside the cylinder by calculating the current density distribution within the body. The temperature within the solid is found from the solution of the unsteady heat equation based on Green's function. Owing to multiple spatial dimensions and time, a separation of variables technique is used to find Green's function. In addition, an innovative algorithm is proposed to take care of the variable material properties in analytical treatment. The analytical solution for temperature is verified with the data obtained from experiments for identical operating conditions. The analytical solution is used to study the impact of heat transfer coefficient and input AC current frequency and amplitude during transient heat diffusion. Our analytical solution suggests that the temperature‐dependent material properties significantly affect the thermal response within the solid. Unlike many other conventional heating methods, the thermal boundary condition changes with time in induction heating, which makes our solution much more challenging.
more »
« less
Catalytic Enhancement of Inductively Heated Fe 3 O 4 Nanoparticles by Removal of Surface Ligands
Heat management in catalysis is limited by each material's heat transfer efficiencies, resulting in energy losses despite current thermal engineering strategies. In contrast, induction heating of magnetic nanoparticles (NPs) generates heat at the surface of the catalyst where the reaction occurs, reducing waste heat via dissipation. However, the synthesis of magnetic NPs with optimal heat generation requires interfacial ligands, such as oleic acid, which act as heat sinks. Surface treatments using tetramethylammonium hydroxide (TMAOH) or pyridine are used to remove these ligands before applications in hydrophilic media. In this study, Fe3O4 NPs are surface treated to study the effect of induction heating on the catalytic oxidation of 1‐octanol. Whereas TMAOH was unsuccessful in removing oleic acid, pyridine treatment resulted in a roughly 2.5‐fold increase in heat generation and product yield. Therefore, efficient surfactant removal has profound implications in induction heating catalysis by increasing the heat transfer and available surface sites.
more »
« less
- Award ID(s):
- 1805785
- PAR ID:
- 10210414
- Date Published:
- Journal Name:
- ChemSusChem
- ISSN:
- 1864-5631
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Surface functionalized barium titanate (BaTiO 3 ) nanocrystals have been explored for highly tunable chemical and electronic properties, potentially of use in ceramic-polymer composites for flexible ferroelectric device applications, directed synthesis of ferroelectric thin films or other nano-architectures, and other potential applications. The detailed temperature dependent local structure evolution of BaTiO 3 nanocubes capped with nonpolar oleic acid (OA) and polar tetrafluoroborate (BF 4 − ) ligands are investigated using in situ synchrotron X-ray diffraction and pair distribution function (PDF) analysis, in conjunction with piezoresponse force microscopy (PFM) and 137 Ba nuclear magnetic resonance (NMR) spectroscopy measurements. Diffraction analysis reveals that nanocubes capped by polar BF 4 − ligands undergo sharper ferroelectric to paraelectric phase transitions than nanocubes capped with nonpolar OA ligands, with the smallest ∼12 nm nanocubes displaying no transition. Local non-centrosymmetric symmetry is observed by PDF analysis and confirmed by NMR, persisting across the phase transition temperature. Local distortion analysis, manifested in tetragonality ( c / a ) and Ti off-centering ( z Ti ) parameters, reveals distinct temperature and length-scale dependencies with particle size and capping group. Ferroelectric order is increased by polar BF 4 − ligands, which is corroborated by an enhancement of PFM response.more » « less
-
Investigation of charge transfer in quantum dot (QD) systems is an area of great interest. Specifically, the relationship between capping ligand and rate of charge transfer has been studied as a means to optimize these materials. To investigate the role of ligand interaction on the QD surface for electron transfer, we designed and synthesized a series of ligands containing an electron accepting moiety, naphthalene bisimide (NBI). These ligands differ in their steric bulk: as one allows for π–π stacking between the NBI moieties at high surface coverages, while the other does not, allowing for a direct comparison of these effects. Once grafted onto QDs, these hybrid materials were studied using UV-Vis, fluorescence, and transient absorption spectroscopy. Interestingly, the sample with the fastest electron transfer was not the sample with the most NBI π–π stacking, it was instead where these ligands were mixed amongst oleic acid, breaking up H-aggregates between the NBI groups.more » « less
-
Abstract Ruthenium has been hailed as a competitive alternative for platinum toward hydrogen evolution reaction (HER), a critical process in electrochemical water splitting. In this study, we successfully prepare metallic Ru nanoparticles supported on carbon paper by utilizing a novel magnetic induction heating (MIH) method. The samples are obtained within seconds, featuring a Cl‐enriched surface that is unattainable via conventional thermal annealing. The best sample within the series shows a remarkable HER activity in both acidic and alkaline media with an overpotential of only ‐23 and ‐12 mV to reach the current density of 10 mA/cm2, highly comparable to that of the Pt/C benchmark. Theoretical studies based on density functional theory show that the excellent electrocatalytic activity is accounted by the surface metal‐Cl species that facilitate charge transfer and downshift the d‐band center. Results from this study highlight the unique advantages of MIH in rapid sample preparation, where residual anion ligands play a critical role in manipulating the electronic properties of the metal surfaces and the eventual electrocatalytic activity.more » « less
-
A facile methodology to prepare N-heterocyclic carbene (NHC)-terminated polymers as surface ligands to functionalize gold nanoparticles (AuNPs) is reported. Our method highlights a mild, aerobic synthesis of NHC-functionalized polymers and a simple ligand exchange approach towards surface modification of AuNPs prepared in aqueous solution. Two methods, including end-group functionalization of halogen-ended polymers from a conventional atom transfer radical polymerization (ATRP) and post-polymerization functionalization of imidazole-containing polymers using imidazole-containing ATRP initiator, have been investigated to prepare imidazolium-ended polymers. Using a one-step, oxygen and moisture tolerant procedure, the polymer–NHC–Cu( i ) species can be synthesized from imidazolium-ended polymers and readily bind to citrate-capped AuNPs likely through transmetalation, yielding robust polymer-stabilized AuNPs. Our synthetic method significantly simplifies the preparation and use of polymer–NHC ligands for surface functionalization of metal NPs. Our methodology is general and potentially applicable to any polymers prepared by ATRP to functionalize metal NPs via NHC–metal coordination; therefore, it will likely broaden the applications of polymer–NHC ligands for metal nanoparticles in the fields of catalysis and nanomedicine.more » « less
An official website of the United States government

