skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Temperature dependent local structure coherence of surface-modified BaTiO 3 nanocubes
Surface functionalized barium titanate (BaTiO 3 ) nanocrystals have been explored for highly tunable chemical and electronic properties, potentially of use in ceramic-polymer composites for flexible ferroelectric device applications, directed synthesis of ferroelectric thin films or other nano-architectures, and other potential applications. The detailed temperature dependent local structure evolution of BaTiO 3 nanocubes capped with nonpolar oleic acid (OA) and polar tetrafluoroborate (BF 4 − ) ligands are investigated using in situ synchrotron X-ray diffraction and pair distribution function (PDF) analysis, in conjunction with piezoresponse force microscopy (PFM) and 137 Ba nuclear magnetic resonance (NMR) spectroscopy measurements. Diffraction analysis reveals that nanocubes capped by polar BF 4 − ligands undergo sharper ferroelectric to paraelectric phase transitions than nanocubes capped with nonpolar OA ligands, with the smallest ∼12 nm nanocubes displaying no transition. Local non-centrosymmetric symmetry is observed by PDF analysis and confirmed by NMR, persisting across the phase transition temperature. Local distortion analysis, manifested in tetragonality ( c / a ) and Ti off-centering ( z Ti ) parameters, reveals distinct temperature and length-scale dependencies with particle size and capping group. Ferroelectric order is increased by polar BF 4 − ligands, which is corroborated by an enhancement of PFM response.  more » « less
Award ID(s):
2004455
PAR ID:
10331866
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry C
ISSN:
2050-7526
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Knowledge about phase transitions in doped HfO2and ZrO2‐based films is crucial for developing future ferroelectric devices. These devices should perform in ambient temperature ranges with no degradation of device performance. Here, the phase transition from the polar orthorhombic to the nonpolar tetragonal phase in thin films is of significant interest. Detailed electrical and structural characterization is performed on 10 nm mixed HfxZr1‐xO2binary oxides with different ZrO2in HfO2and small changes in oxygen content. Both dopant and oxygen content directly impact the phase transition temperature between the polar and nonpolar phase. A first‐order phase transition with thermal hysteresis is observed from the nonpolar to the polar phase with a maximum in the dielectric constant. The observed phase transition temperatures confirm trends as obtained by DFT calculations. Based on the outcome of the measurements, the classification of the ferroelectric material is discussed. 
    more » « less
  2. null (Ed.)
    Hard X-ray nanodiffraction provides a unique nondestructive technique to quantify local strain and structural inhomogeneities at nanometer length scales. However, sample mosaicity and phase separation can result in a complex diffraction pattern that can make it challenging to quantify nanoscale structural distortions. In this work, a k -means clustering algorithm was utilized to identify local maxima of intensity by partitioning diffraction data in a three-dimensional feature space of detector coordinates and intensity. This technique has been applied to X-ray nanodiffraction measurements of a patterned ferroelectric PbZr 0.2 Ti 0.8 O 3 sample. The analysis reveals the presence of two phases in the sample with different lattice parameters. A highly heterogeneous distribution of lattice parameters with a variation of 0.02 Å was also observed within one ferroelectric domain. This approach provides a nanoscale survey of subtle structural distortions as well as phase separation in ferroelectric domains in a patterned sample. 
    more » « less
  3. The current trend in the miniaturization of electronic devices has driven the investigation into many nanostructured materials. The ferroelectric material barium titanate (BaTiO 3 ) has garnered considerable attention over the past decade owing to its excellent dielectric and ferroelectric properties. This has led to significant progress in synthetic techniques that yield high quality BaTiO 3 nanocrystals (NCs) with well-defined morphologies ( e.g. , nanoparticles, nanorods, nanocubes and nanowires) and controlled crystal phases ( e.g. , cubic, tetragonal and multi-phase). The ability to produce nanoscale BaTiO 3 with controlled properties enables theoretical and experimental studies on the intriguing yet complex dielectric properties of individual BaTiO 3 NCs as well as BaTiO 3 /polymer nanocomposites. Compared with polymer-free individual BaTiO 3 NCs, BaTiO 3 /polymer nanocomposites possess several advantages. The polymeric component enables simple solution processibility, high breakdown strength and light weight for device scalability. The BaTiO 3 component enables a high dielectric constant. In this review, we highlight recent advances in the synthesis of high-quality BaTiO 3 NCs via a variety of chemical approaches including organometallic, solvothermal/hydrothermal, templating, molten salt, and sol–gel methods. We also summarize the dielectric and ferroelectric properties of individual BaTiO 3 NCs and devices based on BaTiO 3 NCs via theoretical modeling and experimental piezoresponse force microscopy (PFM) studies. In addition, viable synthetic strategies for novel BaTiO 3 /polymer nanocomposites and their structure–composition–performance relationship are discussed. Lastly, a perspective on the future direction of nanostructured BaTiO 3 -based materials is presented. 
    more » « less
  4. The prospect of creating ferroelectric or high permittivity nanomaterials provides motivation for investigating complex transition metal oxides of the form Ba(Ti, MV)O3, where M = Nb or Ta. Solid state processing typically produces mixtures of crystalline phases, rarely beyond minimally doped Nb/Ta. Using a modified sol-gel method, we prepared single phase nanocrystals of Ba(Ti, M)O3. Compositional and elemental analysis puts the empirical formulas close to BaTi0.5Nb0.5O3−δ and BaTi0.5Ta0.5O3−δ. For both materials, a reversible temperature dependent phase transition (non-centrosymmetric to symmetric) is observed in the Raman spectrum in the region 533–583 K (260–310 °C); for Ba(Ti, Nb)O3, the onset is at 543 K (270 °C); and for Ba(Ti, Ta)O3, the onset is at 533 K (260 °C), which are comparable with 390–393 K (117–120 °C) for bulk BaTiO3. The crystal structure was resolved by examination of the powder x-ray diffraction and atomic pair distribution function (PDF) analysis of synchrotron total scattering data. It was postulated whether the structure adopted at the nanoscale was single or double perovskite. Double perovskites (A2B′B″O6) are characterized by the type and extent of cation ordering, which gives rise to higher symmetry crystal structures. PDF analysis was used to examine all likely candidate structures and to look for evidence of higher symmetry. The feasible phase space that evolves includes the ordered double perovskite structure Ba2(Ti, MV)O6 (M = Nb, Ta) Fm-3m, a disordered cubic structure, as a suitable high temperature analog, Ba(Ti, MV)O3Pm-3m, and an orthorhombic Ba(Ti, MV)O3Amm2, a room temperature structure that presents an unusually high level of lattice displacement, possibly due to octahedral tilting, and indication of a highly polarized crystal. 
    more » « less
  5. null (Ed.)
    Controlling the growth of complex relaxor ferroelectric thin films and understanding the relationship between biaxial strain–structural domain characteristics are desirable for designing materials with a high electromechanical response. For this purpose, epitaxial thin films free of extended defects and secondary phases are urgently needed. Here, we used optimized growth parameters and target compositions to obtain epitaxial (40–45 nm) 0.67Pb(Mg 1/3 Nb 2/3 )O 3 –0.33PbTiO 3 /(20 nm) SrRuO 3 (PMN–33PT/SRO) heterostructures using pulsed-laser deposition (PLD) on singly terminated SrTiO 3 (STO) and ReScO 3 (RSO) substrates with Re = Dy, Tb, Gd, Sm, and Nd. In situ reflection high-energy electron diffraction (RHEED) and high-resolution X-ray diffraction (HR-XRD) analysis confirmed high-quality and single-phase thin films with smooth 2D surfaces. High-resolution scanning transmission electron microscopy (HR-STEM) revealed sharp interfaces and homogeneous strain further confirming the epitaxial cube-on-cube growth mode of the PMN–33PT/SRO heterostructures. The combined XRD reciprocal space maps (RSMs) and piezoresponse force microscopy (PFM) analysis revealed that the domain structure of the PMN–33PT heterostructures is sensitive to the applied compressive strain. From the RSM patterns, an evolution from a butterfly-shaped diffraction pattern for mildly strained PMN–33PT layers, which is evidence of stabilization of relaxor domains, to disc-shaped diffraction patterns for high compressive strains with a highly distorted tetragonal structure, is observed. The PFM amplitude and phase of the PMN–33PT thin films confirmed the relaxor-like for a strain state below ∼1.13%, while for higher compressive strain (∼1.9%) the irregularly shaped and poled ferroelectric domains were observed. Interestingly, the PFM phase hysteresis loops of the PMN–33PT heterostructures grown on the SSO substrates (strain state of ∼0.8%) exhibited an enhanced coercive field which is about two times larger than that of the thin films grown on GSO and NSO substrates. The obtained results show that epitaxial strain engineering could serve as an effective approach for tailoring and enhancing the functional properties in relaxor ferroelectrics. 
    more » « less