skip to main content

Title: Enhancing Dissemination of Evidence-Based Models for STEM PhD Career Development; a Stakeholder Workshop Report
Sustainability of the scientific enterprise requires being able to recruit, retain, and prepare ongoing generations of PhD-trained scientists ready to adapt with the evolving needs of the scientific workforce and society. This necessitates a broadened, trainee-centered view in doctoral and postdoctoral training—including a prominent focus on career planning, science across sectors, and development of professional skills. Although there is energy and movement to enhance graduate and postdoctoral training, actions remain disparate, leading to inefficiencies in implementation and lack of systemic change. In 2019, an emerging national initiative, Professional Development Hub (pd|hub), hosted a workshop to bring organizations and individuals together across stakeholder groups to discuss enhancing the development, dissemination, and widespread implementation of evidence-based practices for STEM graduate and postdoctoral education, with specific emphasis on career and professional development for PhD scientists. The fifty workshop participants represented nine key stakeholder groups: career development practitioners, scientific societies, disseminators, education researchers and evaluators, employers of PhD scientists, funders, professional associations, trainees, and university leaders and faculty. In addition, participants spanned different races, ethnicities, genders, disciplines, sectors, geographic locations, career stages, and levels of institutional resources. This report presents cross-cutting themes identified at the workshop, examples of stakeholder-specific perspectives, and recommended next steps. more » As part of the collective effort to develop a foundation for sustainable solutions, several actions were defined, including: incentivizing change at institutions and programs, curating and disseminating resources for evidence-based career and professional development educational practices, expanding evidence for effective training and mentoring, establishing expectations for STEM career and professional development, and improving communication across all stakeholders in STEM PhD education. Furthermore, the report describes national-level actions already moving forward via pd|hub in the months following the workshop. Building on a decade of reports and gatherings advocating for a shift in graduate and postdoctoral education, this workshop represented a key step and catalyst for change toward a more impactful future. « less
Authors:
; ; ;
Award ID(s):
1848789
Publication Date:
NSF-PAR ID:
10210467
Journal Name:
pd|hub Publications, University of Massachusetts Medical School
Sponsoring Org:
National Science Foundation
More Like this
  1. Amidst growing concerns about a lack of attention to ethics in engineering education and professional practice, a variety of formal course-based interventions and informal or extracurricular programs have been created to improve the social and ethical commitments of engineering graduates. To supplement the formal and informal ethics education received as undergraduate students, engineering professionals often also participate in workplace training and professional development activities on ethics, compliance, and related topics. Despite this preparation, there is growing evidence to suggest that technical professionals are often challenged to navigate ethical situations and dilemmas. Some prior research has focused on assessing the impactsmore »of a variety of learning experiences on students’ understandings of ethics and social responsibility, including the PIs’ prior NSF-funded CCE STEM study which followed engineering students through the four years of their undergraduate studies using both quantitative and qualitative research methods. This prior project explored how the students’ views on these topics changed across demographic groups, over time, between institutions, and due to specific interventions. Yet, there has been little longitudinal research on how these views and perceptions change (or do not change) among engineers during the school-to-work transition. Furthermore, there has been little exploration of how these views are influenced by the professional contexts in which these engineers work, including cultures and norms prevalent in different technical fields, organizations, and industry sectors. This NSF-supported Ethical and Responsible Research (ER2) study responds to these gaps in the literature by asking: RQ1) How do perceptions of ethics and social responsibility change in the transition from undergraduate engineering degree programs to the workplace (or graduate studies), and how are these perceptions shaped or influenced?, and RQ2) How do perceptions of ethics and social responsibility vary depending on a given individual’s engineering discipline/background and current professional setting? This paper gives an overview of the research project, describing in particular the longitudinal, mixed-methods study design which will involve collecting and analyzing data from a large sample of early career engineers. More specifically, we will present the proposed study contexts, timeline, target subject populations, and procedures for quantitative and qualitative data collection and analysis. We will also describe how this study leverages our prior project, thereby allowing unique longitudinal comparisons that span participants’ years as an engineering undergraduate student to their time as an early-career professional. Through this project, we aim to better understand how early career engineers’ perceptions of social and ethical responsibility are shaped by their prior experiences and current professional contexts. This paper will likely be of particular interest to scholars who teach or research engineering ethics, social responsibility, and professional practice.« less
  2. The Texas A&M University System (TAMUS) received funding from the National Science Foundation (NSF) for a Louis Stokes Alliance for Minority Participation (LSAMP) project in 1991 as one of the six initial awardees. As part of these efforts and upon reaching eligibility, the TAMUS LSAMP applied for and received additional funding to support a Bridge to the Doctorate (BTD) program. BTD programming provides financial, educational, and social support to incoming STEM master’s degree and PhD students for the first two years of their graduate study. BTD cohorts consist of up to 12 fellows who participate in a program of academicmore »and professional development seminars and workshops. In project evaluation, annual interviews were conducted with the TAMUS BTD participants, the vast majority of whom were underrepresented minorities (92%). During the interviews, the BTD students were asked to discuss ten topics some of which addressed concerns specific to the implementation of the BTD project. This report considers answers provided in the five topic areas which have broader applicability: 1) the learning achieved by participants through participation in BTD, 2) the personal impact of participation in BTD, 3) the influence of BTD on informants’ educational goals, 4) the influence of BTD on informants’ career goals, and 5) barriers the BTD participants perceived to pursuing a PhD. Eighty project participants responded to the questions between 2009 and 2018. They were from eight distinct cohorts of BTD students and represented 32 different areas of STEM specialization. Qualitative analysis of their responses confirmed that students perceived the elements of the TAMUS BTD project to be efficacious and that there was a set of nine seminars from which participants consistently reported benefit. Additional findings were eight key areas in which learning was reported by participants, four areas in which the programming  had personal impact, five influences on educational goals,  nine impacts on career goals, and a detailed list of barriers graduate students who are underrepresented minorities (URM) perceive to pursuing a doctoral degree. The proven and easily replicated pattern of support programming, the demonstrated results of this programming, and insight into barriers URMs perceive to pursuing a STEM doctorate are immediately applicable to URM graduate student support at many institutions of higher education.« less
  3. The HSI (Hispanic Serving Institution) ATE (Advanced Technological Education) Hub 2 is a three-year collaborative research project funded by the National Science Foundation (NSF) that continues the partnership between two successful programs and involves a third partner in piloting professional development that draws upon findings from the initial program. The goal of HSI ATE Hub 2 is to improve outcomes for Latinx students in technician education programs through design, development, pilot delivery, and dissemination of a 3-tier professional development (PD) model for culturally responsive technician education at 2-year Hispanic Serving Institutions (HSIs). The project seeks to do this by developingmore »the awareness and ability of faculty to appreciate, engage, and affirm the unique cultural identities of the students in their classes and use this connection to deepen students’ belonging and emerging identities as STEM learners and future STEM technicians. This paper shares the research foundations shaping this approach and the methods by which faculty professional development is being provided to develop this important and sensitive instructional capability in participating faculty. The tiered PD model features a scaffolded series of reflective and activity-oriented modules to incrementally enrich the instructional practices and mindset of HSI STEM educators and strengthen their repertoire of strategies for engaging culturally diverse students. Scaffolding that translates culturally responsive theory to practice spans each of the four distinct topic modules in each tier. Each topic module in a tier then scaffolds to a more advanced topic module in the next tier. Tier 1, Bienvenidos, welcomes HSI STEM educators who recognize the need to better serve their Latinx students, and want guidance for small practical activities to try with their students. Tier 2, Transformation through Action, immerses HSI STEM educators in additional activities that bring culturally responsive practices into their technician training while building capacity to collect evidence about impacts and outcomes for students. Tier 3, Engaging Community, strengthens leadership as HSI STEM educators disseminate results from activities completed in Tiers 1 and 2 at conferences that attract technician educators. Sharing the evidence-based practices and their outcomes contributes to achieving broader impacts in the Advanced Technological Education or ATE Community of NSF grantees. Westchester Community College (WCC), the first 2-year HSI in the State University of New York (SUNY) 64 campus system, is piloting the 3-tier PD model using virtual learning methods mastered through previous NSF ATE work and the COVID-19 context. During the pilot, over 20 WCC technician educators in three cohorts will develop leadership skills and practice culturally responsive methods. The pilot will build capacity within WCC STEM technician programs to better support the diversity of students, industry demand for a diverse workforce, and WCC’s capacity for future development of technician education programs. This first paper in a three part series describes the program goals and objectives, the 3-Tier PD model, and reports initial results for Cohort A’s engagement in the first three modules of Tier 1.« less
  4. The HSI (Hispanic Serving Institution) ATE (Advanced Technological Education) Hub 2 is a three-year collaborative research project funded by the National Science Foundation (NSF) that continues the partnership between two successful programs and involves a third partner in piloting professional development that draws upon findings from the initial program. The goal of HSI ATE Hub 2 is to improve outcomes for Latinx students in technician education programs through design, development, pilot delivery, and dissemination of a 3-tier professional development (PD) model for culturally responsive technician education at 2-year Hispanic Serving Institutions (HSIs). The project seeks to do this by developingmore »the awareness and ability of faculty to appreciate, engage, and affirm the unique cultural identities of the students in their classes and use this connection to deepen students’ belonging and emerging identities as STEM learners and future STEM technicians. This paper shares the research foundations shaping this approach and the methods by which faculty professional development is being provided to develop this important and sensitive instructional capability in participating faculty. The tiered PD model features a scaffolded series of reflective and activity-oriented modules to incrementally enrich the instructional practices and mindset of HSI STEM educators and strengthen their repertoire of strategies for engaging culturally diverse students. Scaffolding that translates culturally responsive theory to practice spans each of the four distinct topic modules in each tier. Each topic module in a tier then scaffolds to a more advanced topic module in the next tier. Tier 1, Bienvenidos, welcomes HSI STEM educators who recognize the need to better serve their Latinx students, and want guidance for small practical activities to try with their students. Tier 2, Transformation through Action, immerses HSI STEM educators in additional activities that bring culturally responsive practices into their technician training while building capacity to collect evidence about impacts and outcomes for students. Tier 3, Engaging Community, strengthens leadership as HSI STEM educators disseminate results from activities completed in Tiers 1 and 2 at conferences that attract technician educators. Sharing the evidence-based practices and their outcomes contributes to achieving broader impacts in the Advanced Technological Education or ATE Community of NSF grantees. Westchester Community College (WCC), the first 2-year HSI in the State University of New York (SUNY) 64 campus system, is piloting the 3-tier PD model using virtual learning methods mastered through previous NSF ATE work and the COVID-19 context. During the pilot, over 20 WCC technician educators in three cohorts will develop leadership skills and practice culturally responsive methods. The pilot will build capacity within WCC STEM technician programs to better support the diversity of students, industry demand for a diverse workforce, and WCC’s capacity for future development of technician education programs. This first paper in a three part series describes the program goals and objectives, the 3-Tier PD model, and reports initial results for Cohort A’s engagement in the first three modules of Tier 1.« less
  5. Graduate training often takes a monodisciplinary approach that is not informed by best practices, ignores the needs and preferences of students, and overlooks the increasingly interdisciplinary and international nature of research. This is unfortunate, particularly since graduate education that is fully integrated with interdisciplinary research can help students become part of a trained and diverse workforce equipped to meet society’s many challenges. Against this backdrop, a National Science Foundation Research Traineeship (NRT) program is being established at the University of Kentucky leveraging the most effective instruments for the training of STEM professionals, such as network-based graduate student mentoring and careermore »preparation encompassing both technical and professional skillsets. Briefly, the training graduate students will receive – in a way that is fully integrated with the research they perform – includes: 1) tools such as individual development plans and developmental network maps; 2) a multi-departmental and interdisciplinary course on research-related content; 3) a seminar course on transferrable skills (ethics, research, communication, teaching, mentoring, entrepreneurship, teamwork, management, leadership, outreach, etc.); 4) a certificate to be awarded once students complete the two courses above and garner additional credits from an interdisciplinary curriculum of research-related courses; 5) summer internships at other departments and at external institutions (other universities, industry, national laboratories) nationwide or abroad; 6) an annual research-related symposium including all elements of a scientific conference; 7) internal collaborative research grants for participants to fund and pursue their own ideas; 8) fields trips to facilities related to the research; and 9) coaching on job hunting as well as résumé, motivation letter and interview preparation. Since a workforce equipped to meet society’s challenges must be both well trained and diverse, multiple initiatives will ensure that this NRT will broaden participation in STEM. Recruitment-wise, close collaboration with a number of entities will provide this NRT with a broad recruitment pool of talented and diverse students. Moreover, collaboration with these entities will provide trainees with ample opportunities to acquire, practice and refine their professional skills, as trainees present their results and recruit in conferences, meetings and outreach events organized by these entities, become members and/or join their leadership, and expand their professional and mentoring network in the process. In addition, minority trainees will be surveyed periodically to probe their feelings of well-being, preparation, acceptance, belonging and distress, as well as their perception of how well structured their departments and programs are. According to recent literature, these factors determine whether or not they perform (i.e., publish) at rates comparable to their male majority peers. Saliently, the evaluation of the educational model employed will afford a comprehensive understanding not only of the academy components that were more utilized and impactful, but will reveal the individual mentoring and skill-building facets of the program driving its successful implementation. The evaluation plan includes outcomes, performance measures, an evaluation timetable, benchmarks and a description of how formative evaluation will improve practice, the evaluation process also extending to research activities.« less