skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: DFS3: automated distributed file system storage state reconstruction
Distributed file systems present distinctive forensic challenges in comparison to traditional locally mounted file system volume. Storage device media can number in the thousands, and forensic investigations in this setting necessitate a tailored approach to data collection. The Hadoop Distributed File System (HFDS) produces and maintains partially persistent metadata that is pursuant with a logical volume, a file system, and file addresses on the centralized server. Hence, this research investigates the viability of using a residual central server digital artifact to generate a history model of the distributed file system. The history model affords an investigator a high-level perspective of low-level events to narrow investigative process obligations. The model is generated through set-theoretic relations of the file system essential data structure. Graph-theoretic ordering is applied to the events to provide a history model. The research contribution is a rapid reconstruction of the HDFS storage state transitions generating timelines for system events to forensically assess HDFS properties with conceptual similarity to traditional low-level file system forensic tool output. The results of this research provide a prototype tool, DFS3, for rapid and noninvasive data storage state timeline reconstruction in a big data distributed file system.  more » « less
Award ID(s):
1726069
PAR ID:
10210492
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
International Conference on Availability, Reliability and Security
Page Range / eLocation ID:
1 to 10
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The majority of sensitive and personal user data is stored in different Database Management Systems (DBMS). For example, Oracle is frequently used to store corporate data, MySQL serves as the back-end storage for most webstores, and SQLite stores personal data such as SMS messages on a phone or browser bookmarks. Each DBMS manages its own storage (within the operating system), thus databases require their own set of forensic tools. While database carving solutions have been built by multiple research groups, forensic investigators today still lack the tools necessary to analyze DBMS forensic artifacts. The unique nature of database storage and the resulting forensic artifacts require established standards for artifact storage and viewing mechanisms in order for such advanced analysis tools to be developed. In this paper, we present 1) a standard storage format, Database Forensic File Format (DB3F), for database forensic tools output that follows the guidelines established by other (file system) forensic tools, and 2) a view and search toolkit, Database Forensic Toolkit (DF-Toolkit), that enables the analysis of data stored in our database forensic format. Using our prototype implementation, we demonstrate that our toolkit follows the state-of-the-art design used by current forensic tools and offers easy-to-interpret database artifact search capabilities. 
    more » « less
  2. Due to its high performance and decreasing cost per bit, flash storage is the main storage medium in datacenters for hot data. However, flash endurance is a perpetual problem, and due to technology trends, subsequent generations of flash devices exhibit progressively shorter lifetimes before they experience uncorrectable bit errors. In this paper, we propose addressing the flash lifetime problem by allowing devices to expose higher bit error rates. We present DIRECT, a set of techniques that harnesses distributed-level redundancy to enable the adoption of new generations of denser and less reliable flash storage technologies. DIRECT does so by using an end-to-end approach to increase the reliability of distributed storage systems. We implemented DIRECT on two real-world storage systems: ZippyDB, a distributed key-value store in production at Facebook and backed by RocksDB, and HDFS, a distributed file system. When tested on production traces at Facebook, DIRECT reduces application-visible error rates in ZippyDB by more than 100x and recovery time by more than 10,000x. DIRECT also allows HDFS to tolerate a 10,000--100,000x higher bit error rate without experiencing application-visible errors. By significantly increasing the availability and durability of distributed storage systems in the face of bit errors, DIRECT helps extend flash lifetimes. 
    more » « less
  3. Modern applications use storage systems in complex and often surprising ways. Tracing system calls is a common approach to understanding applications' behavior, allowing offline analysis and enabling replay in other environments. But current system-call tracing tools have drawbacks: (1) they often omit some information---such as raw data buffers---needed for full analysis; (2) they have high overheads; (3) they often use non-portable trace formats; and (4) they may not offer useful and scalable analysis and replay tools. We have developed Re-Animator, a powerful system-call tracing tool that focuses on storage-related calls and collects maximal information, capturing complete data buffers and writing all traces in the standard DataSeries format. We also created a prototype replayer that focuses on calls related to file-system state. We evaluated our system on long-running server applications such as key-value stores and databases. Our tracer has an average overhead of only 1.8-2.3×, but the overhead can be as low as 5% for I/O-bound applications. Our replayer verifies that its actions are correct, and faithfully reproduces the logical file system state generated by the original application. 
    more » « less
  4. Access libraries such as ROOT[1] and HDF5[2] allow users to interact with datasets using high level abstractions, like coordinate systems and associated slicing operations. Unfortunately, the implementations of access libraries are based on outdated assumptions about storage systems interfaces and are generally unable to fully benefit from modern fast storage devices. For example, access libraries often implement buffering and data layout that assume that large, single-threaded sequential access patterns are causing less overall latency than small parallel random access: while this is true for spinning media, it is not true for flash media. The situation is getting worse with rapidly evolving storage devices such as non-volatile memory and ever larger datasets. This project explores distributed dataset mapping infrastructures that can integrate and scale out existing access libraries using Ceph’s extensible object model, avoiding re-implementation or even modifications of these access libraries as much as possible. These programmable storage extensions coupled with our distributed dataset mapping techniques enable: 1) access library operations to be offloaded to storage system servers, 2) the independent evolution of access libraries and storage systems and 3) fully leveraging of the existing load balancing, elasticity, and failure management of distributed storage systems like Ceph. They also create more opportunities to conduct storage server-local optimizations specific to storage servers. For example, storage servers might include local key/value stores combined with chunk stores that require different optimizations than a local file system. As storage servers evolve to support new storage devices like non-volatile memory, these server-local optimizations can be implemented while minimizing disruptions to applications. We will report progress on the means by which distributed dataset mapping can be abstracted over particular access libraries, including access libraries for ROOT data, and how we address some of the challenges revolving around data partitioning and composability of access operations. 
    more » « less
  5. null (Ed.)
    Oblivious Random Access Machine (ORAM) allows a client to hide the access pattern and thus, offers a strong level of privacy for data outsourcing. An ideal ORAM scheme is expected to offer desirable properties such as low client bandwidth, low server computation overhead, and the ability to compute over encrypted data. S3ORAM (CCS’17) is an efficient active ORAM scheme, which takes advantage of secret sharing to provide ideal properties for data outsourcing such as low client bandwidth, low server computation and low delay. Despite its merits, S3ORAM only offers security in the semi-honest setting. In practice, an ORAM protocol is likely to operate in the presence of malicious adversaries who might deviate from the protocol to compromise the client privacy. In this paper, we propose MACAO, a new multi-server ORAM framework, which offers integrity, access pattern obliviousness against active adversaries, and the ability to perform secure computation over the accessed data. MACAO harnesses authenticated secret sharing techniques and tree-ORAM paradigm to achieve low client communication, efficient server computation, and low storage overhead at the same time. We fully implemented MACAO and conducted extensive experiments in real cloud platforms (Amazon EC2) to validate the performance of MACAO compared with the state-of-the-art. Our results indicate that MACAO can achieve comparable performance to S3ORAM while offering security against malicious adversaries. MACAO is a suitable candidate for integration into distributed file systems with encrypted computation capabilities towards enabling an oblivious functional data outsourcing infrastructure. 
    more » « less