skip to main content

Title: Geochemistry of Coastal Permafrost and Erosion-Driven Organic Matter Fluxes to the Beaufort Sea Near Drew Point, Alaska
Accelerating erosion of the Alaska Beaufort Sea coast is increasing inputs of organic matter from land to the Arctic Ocean, and improved estimates of organic matter stocks in eroding coastal permafrost are needed to assess their mobilization rates under contemporary conditions. We collected three permafrost cores (4.5–7.5 m long) along a geomorphic gradient near Drew Point, Alaska, where recent erosion rates average 17.2 m year −1 . Down-core patterns indicate that organic-rich soils and lacustrine sediments (12–45% total organic carbon; TOC) in the active layer and upper permafrost accumulated during the Holocene. Deeper permafrost (below 3 m elevation) mainly consists of Late Pleistocene marine sediments with lower organic matter content (∼1% TOC), lower C:N ratios, and higher δ 13 C values. Radiocarbon-based estimates of organic carbon accumulation rates were 11.3 ± 3.6 g TOC m −2  year −1 during the Holocene and 0.5 ± 0.1 g TOC m −2  year −1 during the Late Pleistocene (12–38 kyr BP). Within relict marine sediments, porewater salinities increased with depth. Elevated salinity near sea level (∼20–37 in thawed samples) inhibited freezing despite year-round temperatures below 0°C. We used organic matter stock estimates from the cores in combination with remote sensing time-series data to estimate carbon fluxes for a 9 km stretch of coastline more » near Drew Point. Erosional fluxes of TOC averaged 1,369 kg C m −1  year −1 during the 21st century (2002–2018), nearly doubling the average flux of the previous half-century (1955–2002). Our estimate of the 21st century erosional TOC flux year −1 from this 9 km coastline (12,318 metric tons C year −1 ) is similar to the annual TOC flux from the Kuparuk River, which drains a 8,107 km 2 area east of Drew Point and ranks as the third largest river on the North Slope of Alaska. Total nitrogen fluxes via coastal erosion at Drew Point were also quantified, and were similar to those from the Kuparuk River. This study emphasizes that coastal erosion represents a significant pathway for carbon and nitrogen trapped in permafrost to enter modern biogeochemical cycles, where it may fuel food webs and greenhouse gas emissions in the marine environment. « less
Authors:
; ; ; ; ; ; ; ; ; ;
Award ID(s):
1927553 1806213 1656026 1820883
Publication Date:
NSF-PAR ID:
10210494
Journal Name:
Frontiers in Earth Science
Volume:
8
ISSN:
2296-6463
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract
    Site description. This data package consists of data obtained from sampling surface soil (the 0-7.6 cm depth profile) in black mangrove (Avicennia germinans) dominated forest and black needlerush (Juncus roemerianus) saltmarsh along the Gulf of Mexico coastline in peninsular west-central Florida, USA. This location has a subtropical climate with mean daily temperatures ranging from 15.4 °C in January to 27.8 °C in August, and annual precipitation of 1336 mm. Precipitation falls as rain primarily between June and September. Tides are semi-diurnal, with 0.57 m median amplitudes during the year preceding sampling (U.S. NOAA National Ocean Service, Clearwater Beach, Florida, station 8726724). Sea-level rise is 4.0 ± 0.6 mm per year (1973-2020 trend, mean ± 95 % confidence interval, NOAA NOS Clearwater Beach station). The A. germinans mangrove zone is either adjacent to water or fringed on the seaward side by a narrow band of red mangrove (Rhizophora mangle). A near-monoculture of J. roemerianus is often adjacent to and immediately landward of the A. germinans zone. The transition from the mangrove to the J. roemerianus zone is variable in our study area. An abrupt edge between closed-canopy mangrove and J. roemerianus monoculture may extend for up to several hundred metersMore>>
  2. Abstract
    Permafrost cores (4.5-7.5 m long) were collected April 10th-19th, 2018, along a geomorphic gradient near Drew Point, Alaska to characterize active layer and permafrost geochemistry and material properties. Cores were collected from a young drained lake basin, an ancient drained lake basin, and primary surface that has not been reworked by thaw lake cycles. Measurements of total organic carbon (TOC) and total nitrogen (TN) content, stable carbon isotope ratios (δ13C) and radiocarbon (14C) analyses of bulk soils/sediments were conducted on 45 samples from 3 permafrost cores. Porewaters were extracted from these same core sections and used to measure salinity, dissolved organic carbon (DOC), total dissolved nitrogen (TDN), anion (Cl-, Br-, SO4 2-, NO3 -), and trace metal (Ca, Mn, Al, Ba, Sr, Si, and Fe) concentrations. Radiogenic strontium (87Sr/86Sr) was measured on a subset of porewater samples. Cores were also sampled for material property measurements such as dry bulk density, water content, and grain size fractions.
  3. Abstract

    Groundwater is projected to become an increasing source of freshwater and nutrients to the Arctic Ocean as permafrost thaws, yet few studies have quantified groundwater inputs to Arctic coastal waters under contemporary conditions. New measurements along the Alaska Beaufort Sea coast show that dissolved organic carbon and nitrogen (DOC and DON) concentrations in supra-permafrost groundwater (SPGW) near the land-sea interface are up to two orders of magnitude higher than in rivers. This dissolved organic matter (DOM) is sourced from readily leachable organic matter in surface soils and deeper centuries-to millennia-old soils that extend into thawing permafrost. SPGW delivers approximately 400–2100 m3of freshwater, 14–71 kg of DOC, and 1–4 kg of DON to the coastal ocean per km of shoreline per day during late summer. These substantial fluxes are expected to increase as massive stocks of frozen organic matter in permafrost are liberated in a warming Arctic.

  4. Relict permafrost is ubiquitous throughout the Arctic coastal shelf, but little is known about it near shore. The presence and thawing of subsea permafrost are vital information because permafrost stores an atmosphere’s worth of carbon and protects against coastal erosion. Through electrical resistivity imaging across a lagoon on the Alaska Beaufort Sea coast in summer, we found that the subsurface is not ice-bonded down to ~20 m continually from within the lagoon, across the beach, and underneath an ice-wedge polygon on the tundra. This contrasts with the broadly held idea of a gently sloping ice-bonded permafrost table extending from land to offshore. The extensive unfrozen zone is a marine talik connected to on-land cryopeg. This zone is a potential source and conduit for water and dissolved organic matter, is vulnerable to physical degradation, and is liable to changes in biogeochemical processes that affect carbon cycling and climate feedbacks.
  5. Recent excavation in the new CRREL Permafrost Tunnel in Fox, Alaska provides a unique opportunity to study properties of Yedoma — late Pleistocene ice- and organic-rich syngenetic permafrost. Yedoma has been described at numerous sites across Interior Alaska, mainly within the Yukon-Tanana upland. The most comprehensive data on the structure and properties of Yedoma in this area have been obtained in the CRREL Permafrost Tunnel near Fairbanks — one of the most accessible large-scale exposures of Yedoma permafrost on Earth, which became available to researchers in the mid-1960s. Expansion of the new ∼4-m-high and ∼4-m-wide linear excavations, started in 2011 and ongoing, exposes an additional 300 m of well-preserved Yedoma and provides access to sediments deposited over the past 40,000 years, which will allow us to quantify rates and patterns of formation of syngenetic permafrost, depositional history and biogeochemical characteristics of Yedoma, and its response to a warmer climate. In this paper, we present results of detailed cryostratigraphic studies in the Tunnel and adjacent area. Data from our study include ground-ice content, the stable water isotope composition of the variety of ground-ice bodies, and radiocarbon age dates. Based on cryostratigraphic mapping of the Tunnel and results of drilling above and inside themore »Tunnel, six main cryostratigraphic units have been distinguished: 1) active layer; 2) modern intermediate layer (ice-rich silt); 3) relatively ice-poor Yedoma silt reworked by thermal erosion and thermokarst during the Holocene; 4) ice-rich late Pleistocene Yedoma silt with large ice wedges; 5) relatively ice-poor fluvial gravel; and 6) ice-poor bedrock. Our studies reveal significant differences in cryostratigraphy of the new and old CRREL Permafrost Tunnel facilities. Original syngenetic permafrost in the new Tunnel has been better preserved and less affected by erosional events during the period of Yedoma formation, although numerous features (e.g., bodies of thermokarst-cave ice, thaw unconformities, buried gullies) indicate the original Yedoma silt in the recently excavated sections was also reworked to some extent by thermokarst and thermal erosion during the late Pleistocene and Holocene.« less