skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1832238

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. abstract The marine coastal region makes up just 10% of the total area of the global ocean but contributes nearly 20% of its total primary production and over 80% of fisheries landings. Unicellular phytoplankton dominate primary production. Climate variability has had impacts on various marine ecosystems, but most sites are just approaching the age at which ecological responses to longer term, unidirectional climate trends might be distinguished. All five marine pelagic sites in the US Long Term Ecological Research (LTER) network are experiencing warming trends in surface air temperature. The marine physical system is responding at all sites with increasing mixed layer temperatures and decreasing depth and with declining sea ice cover at the two polar sites. Their ecological responses are more varied. Some sites show multiple population or ecosystem changes, whereas, at others, changes have not been detected, either because more time is needed or because they are not being measured. 
    more » « less
  2. Abstract Groundwater is projected to become an increasing source of freshwater and nutrients to the Arctic Ocean as permafrost thaws, yet few studies have quantified groundwater inputs to Arctic coastal waters under contemporary conditions. New measurements along the Alaska Beaufort Sea coast show that dissolved organic carbon and nitrogen (DOC and DON) concentrations in supra-permafrost groundwater (SPGW) near the land-sea interface are up to two orders of magnitude higher than in rivers. This dissolved organic matter (DOM) is sourced from readily leachable organic matter in surface soils and deeper centuries-to millennia-old soils that extend into thawing permafrost. SPGW delivers approximately 400–2100 m3of freshwater, 14–71 kg of DOC, and 1–4 kg of DON to the coastal ocean per km of shoreline per day during late summer. These substantial fluxes are expected to increase as massive stocks of frozen organic matter in permafrost are liberated in a warming Arctic. 
    more » « less
  3. Abstract Multiple aquatic ecosystems (pond, lake, river, lagoon, and ocean) on the Arctic Coastal Plain near Utqiaġvik, Alaska, USA, were visited to determine their relative atmospheric CO2flux and how this may have changed over time. The nearshore coastal waters and large freshwater lakes were small sources of atmospheric CO2, whereas smaller waterbodies were substantial sources.pCO2was linked to dissolved organic carbon concentrations across broad spatial and temporal scales, with greater concentrations found in smaller freshwater systems (i.e., ponds and rivers). On a day‐to‐day basis, water temperatures appeared to be the strongest driver ofpCO2levels in tundra ponds, where warmer temperatures likely stimulated microbial mineralization of carbon in both aquatic and hydrologically linked terrestrial environments. Large rainfall events, which may lead to inflow of carbon‐rich groundwater into these ponds, also were associated with increased daily averagepCO2. Based on comparison to historical data, we estimate that CO2concentrations in tundra ponds have increased more than 1.8 times over the past 40 years. Quantifying CO2flux from these abundant aquatic ecosystems on the Arctic Coastal Plain and elsewhere in the high northern latitudes will likely have important implications for furthering understanding of landscape‐level and nearshore carbon dynamics in the Arctic. 
    more » « less
  4. The aquatic environment of the coastal Arctic is rapidly changing, and understanding how this change will affect the coastal ocean is critical across sectors. To address this, a three-dimensional (3-D) hydrodynamic model was constructed, spanning the coastal Beaufort Sea from −153° to −142° W, explicitly including river delta channels and lagoons, and extending to the continental shelf. The Finite Volume Community Ocean Model (FVCOM) was used to predict ocean physical properties from January 2018 to September 2022, including dynamic sea ice and landfast ice. Model calibration and validation were conducted using a variety of data sources, includingin situhydrodynamic data from oceanographic cruises and moorings. Overall, the model captured interannual temperature variation at Prudhoe Bay from 2018 to 2022 with a model efficiency (MEF) score > 0 (better than the average) for all years (MEF = 0.59, 0.63, 0.23, 0.46, and 0.55). The seasonal temperatures in 2018 and 2019 at bottom-mounted moorings were also well captured (R2= 0.80–0.90), and sea surface height (SSH) was compared to hourly observations at Prudhoe Bay, with both the low-frequency (R2= 0.42) and diurnal (R2= 0.71) variations validated over the model period. Modeled salinity and water current velocity had mixed results compared to the observations: seasonal trends in salinity were generally captured well, but hypersaline lagoon conditions in the winter were not replicated. Measured bottom water velocity proved difficult to recreate within the model for any given point in time from 2018 to 2019. Covariance analyses of the surface wind velocity, SSH, and current velocity indicated that wind forcing significantly correlated to errors in local SSH predictions. Current velocity covaried substantially less with SSH and wind velocity, with large differences across the three moorings: this suggests that local factors such as bathymetry and shielding by islands are likely important. Future work building on this system will include analyses of the drivers of landfast ice and sea ice breakup; the potential for erosion via waves, large storms, and elevated surface temperatures; and the linkage to an ecosystem model that represents processes from carbon cycling to higher trophic levels. 
    more » « less
    Free, publicly-accessible full text available July 14, 2026
  5. Climate change has affected the Arctic Ocean (AO) and its marginal seas significantly. The reduction of sea ice in the Arctic region has altered the magnitude of photosynthetically available radiation (PAR) entering the water column, impacting primary productivity. Increasing cloudiness in the atmosphere and rising turbidity in the coastal waters of the Arctic region are considered as the major factors that counteract the effect of reduced sea ice on underwater PAR. Additionally, extreme solar zenith angles and sea-ice cover in the AO increase the complexity of retrieving PAR. In this study, a PAR algorithm based on radiative transfer in the atmosphere and satellite observations is implemented to evaluate the effect of these factors on PAR in the coastal AO. To improve the performance of the algorithm, a flag is defined to identify pixels containing open-water, sea-ice or cloud. The use of flag enabled selective application of algorithms to compute the input parameters for the PAR algorithm. The PAR algorithm is validated using in situ measurements from various coastal sites in the Arctic and sub-Arctic seas. The algorithm estimated daily integrated PAR above the sea surface with an uncertainty of 19% in summer. The uncertainty increased to 24% when the algorithm was applied year-round. The PAR values at the seafloor were estimated with an uncertainty of 76%, with 36% of the samples under sea ice and/or cloud cover. The robust performance of the PAR algorithm in the pan-Arctic region throughout the year will help to effectively study the temporal and spatial variability of PAR in the Arctic coastal waters. The calculated PAR data are used to quantify the changing trend in PAR at the seafloor in the coastal AO with depth < 100 m using MODIS-Aqua data from 2003 to 2020. The general trends calculated using the pixels with average PAR > 0.415 mol m−2 day−1 at the seafloor during summer indicate that the annual average of PAR entering the water column in the coastal AO between 2003 and 2020 increased by 23%. Concurrently, due to increased turbidity, the attenuation in the water column increased by 22%. The surge in incident PAR in the water column due to retreating sea ice first led to increased PAR observed at the seafloor (∼12% between 2003 and 2014). However, in the last decade, the rapid increase in light attenuation of the water column has restricted the increase in average annual PAR reaching the bottom in the coastal AO. 
    more » « less