skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Opto-Thermomechanical Nanoprinting and Nanorepairing
A new printing method based on opto-thermomechanical (OTM) transfer of nanoparticles with a continuous-wave laser is introduced. The OTM method allows for not only additive nanoprinting but also nanorepairing.  more » « less
Award ID(s):
1761132
PAR ID:
10210704
Author(s) / Creator(s):
Date Published:
Journal Name:
Frontiers in Optics 2020
Page Range / eLocation ID:
FTu6B.1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Other test method (OTM) 33A has been used to quantify emissions from natural gas sites since it was introduced by the Environmental Protection Agency (EPA). The method relies on point source Gaussian (PSG) assumptions to estimate emissions rates from a targeted site or source. However, the method often results in low accuracy (typically ±70%, even under conducive conditions). These accuracies were verified with controlled-release experiments. Typically, controlled releases were performed for short periods (15–20 min) under atmospheric conditions that were ideal for effective plume transport. We examined three methane release rates from three distances over various periods of time ranging from seven hours to seven days. Data were recorded continuously from a stationary tower. Atmospheric conditions were highly variable and not always conducive to conventional OTM 33A calculations. OTM 33A estimates were made for 20-min periods when the mean wind direction corresponded to ±90° of the direction from the controlled release to the tower. Further analyses were performed by varying the frequency of the data, the length of the individual OTM 33A periods and the size of the wind angle used to filter data. The results suggested that different (than conventionally used) period lengths, wind filters, data acquisition frequencies and data quality filters impacted the accuracy of OTM 33A when applied to long term measurements. 
    more » « less
  2. An opto-thermomechanical (OTM) nanoprinting method is demonstrated to not only additively print nanostructures with sub-100 nm accuracy but also to correct printing errors for nanorepairing under ambient conditions. 
    more » « less
  3. We demonstrate an opto-thermomechanical (OTM) nanoprinting method that allows us not only to additively print nanostructures with sub-100 nm accuracy but also to correct printing errors for nanorepairing under ambient conditions. Different from other existing nanoprinting methods, this method works when a nanoparticle on the surface of a soft substrate is illuminated by a continuous-wave (cw) laser beam in a gaseous environment. The laser heats the nanoparticle and induces a rapid thermal expansion of the soft substrate. This thermal expansion can either release a nanoparticle from the soft surface for nanorepairing or transfer it additively to another surface in the presence of optical forces for nanoprinting with sub-100 nm accuracy. Details of the printing mechanism and parameters that affect the printing accuracy are investigated. This additive OTM nanoprinting technique paves the way for rapid and affordable additive manufacturing or 3D printing at the nanoscale under ambient conditions. 
    more » « less
  4. Researchers have utilized Other Test Method (OTM) 33A to quantify methane emissions from natural gas infrastructure. Historically, errors have been reported based on a population of measurements compared to known controlled releases of methane. These errors have been reported as 2σ errors of ±70%. However, little research has been performed on the minimum attainable uncertainty of any one measurement. We present two methods of uncertainty estimation. The first was the measurement uncertainty of the state-of-the-art equipment, which was determined to be ±3.8% of the estimate. This was determined from bootstrapped measurements compared to controlled releases. The second approach of uncertainty estimation was a modified Hollinger and Richardson (H&R) method which was developed for quantifying the uncertainty of eddy covariance measurements. Using a modified version of this method applied to OTM 33A measurements, it was determined that uncertainty of any given measurement was ±17%. Combining measurement uncertainty with that of stochasticity produced a total minimum uncertainty of 17.4%. Due to the current nature of stationary single-sensor measurements and the stochasticity of atmospheric data, such uncertainties will always be present. This is critical in understanding the transport of methane emissions and indirect measurements obtained from the natural gas industry. 
    more » « less
  5. Flammia, Steven T (Ed.)
    {"Abstract":["A central tenet of theoretical cryptography is the study of the minimal assumptions required to implement a given cryptographic primitive. One such primitive is the one-time memory (OTM), introduced by Goldwasser, Kalai, and Rothblum [CRYPTO 2008], which is a classical functionality modeled after a non-interactive 1-out-of-2 oblivious transfer, and which is complete for one-time classical and quantum programs. It is known that secure OTMs do not exist in the standard model in both the classical and quantum settings. Here, we propose a scheme for using quantum information, together with the assumption of stateless (i.e., reusable) hardware tokens, to build statistically secure OTMs. Via the semidefinite programming-based quantum games framework of Gutoski and Watrous [STOC 2007], we prove security for a malicious receiver, against a linear number of adaptive queries to the token, in the quantum universal composability framework, but leave open the question of security against a polynomial amount of queries. Compared to alternative schemes derived from the literature on quantum money, our scheme is technologically simple since it is of the "prepare-and-measure" type. We also show our scheme is "tight" according to two scenarios."]} 
    more » « less