skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Continuous OTM 33A Analysis of Controlled Releases of Methane with Various Time Periods, Data Rates and Wind Filters
Other test method (OTM) 33A has been used to quantify emissions from natural gas sites since it was introduced by the Environmental Protection Agency (EPA). The method relies on point source Gaussian (PSG) assumptions to estimate emissions rates from a targeted site or source. However, the method often results in low accuracy (typically ±70%, even under conducive conditions). These accuracies were verified with controlled-release experiments. Typically, controlled releases were performed for short periods (15–20 min) under atmospheric conditions that were ideal for effective plume transport. We examined three methane release rates from three distances over various periods of time ranging from seven hours to seven days. Data were recorded continuously from a stationary tower. Atmospheric conditions were highly variable and not always conducive to conventional OTM 33A calculations. OTM 33A estimates were made for 20-min periods when the mean wind direction corresponded to ±90° of the direction from the controlled release to the tower. Further analyses were performed by varying the frequency of the data, the length of the individual OTM 33A periods and the size of the wind angle used to filter data. The results suggested that different (than conventionally used) period lengths, wind filters, data acquisition frequencies and data quality filters impacted the accuracy of OTM 33A when applied to long term measurements.  more » « less
Award ID(s):
1804024
PAR ID:
10288935
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Environments
Volume:
7
Issue:
9
ISSN:
2076-3298
Page Range / eLocation ID:
65
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Small uncrewed aerial systems (sUASs) can be used to quantify emissions of greenhouse and other gases, providing flexibility in quantifying these emissions from a multitude of sources, including oil and gas infrastructure, volcano plumes, wildfire emissions, and natural sources. However, sUAS-based emission estimates are sensitive to the accuracy of wind speed and direction measurements. In this study, we examined how filtering and correcting sUAS-based wind measurements affects data accuracy by comparing data from a miniature ultrasonic anemometer mounted on a sUAS in a joust configuration to highly accurate wind data taken from a nearby eddy covariance flux tower (aka the Tower). These corrections had a small effect on wind speed error, but reduced wind direction errors from 50° to >120° to 20–30°. A concurrent experiment examining the amount of error due to the sUAS and the Tower not being co-located showed that the impact of this separation was 0.16–0.21 ms−1, a small influence on wind speed errors. Lower wind speed errors were correlated with lower turbulence intensity and higher relative wind speeds. There were also some loose trends in diminished wind direction errors at higher relative wind speeds. Therefore, to improve the quality of sUAS-based wind measurements, our study suggested that flight planning consider optimizing conditions that can lower turbulence intensity and maximize relative wind speeds as well as include post-flight corrections. 
    more » « less
  2. Researchers have utilized Other Test Method (OTM) 33A to quantify methane emissions from natural gas infrastructure. Historically, errors have been reported based on a population of measurements compared to known controlled releases of methane. These errors have been reported as 2σ errors of ±70%. However, little research has been performed on the minimum attainable uncertainty of any one measurement. We present two methods of uncertainty estimation. The first was the measurement uncertainty of the state-of-the-art equipment, which was determined to be ±3.8% of the estimate. This was determined from bootstrapped measurements compared to controlled releases. The second approach of uncertainty estimation was a modified Hollinger and Richardson (H&R) method which was developed for quantifying the uncertainty of eddy covariance measurements. Using a modified version of this method applied to OTM 33A measurements, it was determined that uncertainty of any given measurement was ±17%. Combining measurement uncertainty with that of stochasticity produced a total minimum uncertainty of 17.4%. Due to the current nature of stationary single-sensor measurements and the stochasticity of atmospheric data, such uncertainties will always be present. This is critical in understanding the transport of methane emissions and indirect measurements obtained from the natural gas industry. 
    more » « less
  3. National models of the electric sector typically consider a handful of generator operating periods per year, while pollutant fate and transport models have an hourly resolution. We bridge that scale gap by introducing a novel fundamental-based temporal downscaling method (TDM) for translating national or regional energy scenarios to hourly emissions. Optimization-based generator dispatch is used to account for variations in emissions stemming from weather-sensitive power demands and wind and solar generation. The TDM is demonstrated by downscaling emissions from the electricity market module in the National Energy Model System. As a case study, we implement the TDM in the Virginia−Carolinas region and compare its results with traditional statistical downscaling used in the Sparse Matrix Operator Kernel Emissions (SMOKE) processing model. We find that the TDM emission profiles respond to weather and that nitrogen oxide emissions are positively correlated with conditions conducive to ozone formation. In contrast, SMOKE emission time series, which are rooted in historical operating patterns, exhibit insensitivity to weather conditions and potential biases, particularly with high renewable penetration and climate change. Relying on SMOKE profiles can also obscure variations in emission patterns across different policy scenarios, potentially downplaying their impacts on power system operations and emissions. 
    more » « less
  4. We demonstrate an opto-thermomechanical (OTM) nanoprinting method that allows us not only to additively print nanostructures with sub-100 nm accuracy but also to correct printing errors for nanorepairing under ambient conditions. Different from other existing nanoprinting methods, this method works when a nanoparticle on the surface of a soft substrate is illuminated by a continuous-wave (cw) laser beam in a gaseous environment. The laser heats the nanoparticle and induces a rapid thermal expansion of the soft substrate. This thermal expansion can either release a nanoparticle from the soft surface for nanorepairing or transfer it additively to another surface in the presence of optical forces for nanoprinting with sub-100 nm accuracy. Details of the printing mechanism and parameters that affect the printing accuracy are investigated. This additive OTM nanoprinting technique paves the way for rapid and affordable additive manufacturing or 3D printing at the nanoscale under ambient conditions. 
    more » « less
  5. Small unmanned aircraft systems (sUAS) are rapidly transforming atmospheric research. With the advancement of the development and application of these systems, improving knowledge of best practices for accurate measurement is critical for achieving scientific goals. We present results from an intercomparison of atmospheric measurement data from the Lower Atmospheric Process Studies at Elevation—a Remotely piloted Aircraft Team Experiment (LAPSE-RATE) field campaign. We evaluate a total of 38 individual sUAS with 23 unique sensor and platform configurations using a meteorological tower for reference measurements. We assess precision, bias, and time response of sUAS measurements of temperature, humidity, pressure, wind speed, and wind direction. Most sUAS measurements show broad agreement with the reference, particularly temperature and wind speed, with mean value differences of 1.6 ± 2.6 ∘ C and 0.22 ± 0.59 m/s for all sUAS, respectively. sUAS platform and sensor configurations were found to contribute significantly to measurement accuracy. Sensor configurations, which included proper aspiration and radiation shielding of sensors, were found to provide the most accurate thermodynamic measurements (temperature and relative humidity), whereas sonic anemometers on multirotor platforms provided the most accurate wind measurements (horizontal speed and direction). We contribute both a characterization and assessment of sUAS for measuring atmospheric parameters, and identify important challenges and opportunities for improving scientific measurements with sUAS. 
    more » « less