Abstract The efficient isolation of viable and intact circulating tumor cells (CTCs) from blood is critical for the genetic analysis of cancer cells, prediction of cancer progression, development of drugs, and evaluation of therapeutic treatments. While conventional cell separation devices utilize the size difference between CTCs and other blood cells, they fail to separate CTCs from white blood cells (WBCs) due to significant size overlap. To overcome this issue, we present a novel approach that combines curved contraction–expansion (CE) channels with dielectrophoresis (DEP) and inertial microfluidics to isolate CTCs from WBCs regardless of size overlap. This label‐free and continuous separation method utilizes dielectric properties and size variation of cells for the separation of CTCs from WBCs. The results demonstrate that the proposed hybrid microfluidic channel can effectively isolate A549 CTCs from WBCs regardless of their size with a throughput of 300 μL/min, achieving a high separation distance of 233.4 μm at an applied voltage of 50 Vp–p. The proposed method allows for the modification of cell migration characteristics by controlling the number of CE sections of the channel, applied voltage, applied frequency, and flow rate. With its unique features of a single‐stage separation, simple design, and tunability, the proposed method provides a promising alternative to the existing label‐free cell separation techniques and may have a wide range of applications in biomedicine.
more »
« less
Evaluation of Performance and Tunability of a Co-Flow Inertial Microfluidic Device
Microfluidics has gained a lot of attention for biological sample separation and purification methods over recent years. From many active and passive microfluidic techniques, inertial microfluidics offers a simple and efficient method to demonstrate various biological applications. One prevalent limitation of this method is its lack of tunability for different applications once the microfluidic devices are fabricated. In this work, we develop and characterize a co-flow inertial microfluidic device that is tunable in multiple ways for adaptation to different application requirements. In particular, flow rate, flow rate ratio and output resistance ratio are systematically evaluated for flexibility of the cutoff size of the device and modification of the separation performance post-fabrication. Typically, a mixture of single size particles is used to determine cutoff sizes for the outlets, yet this fails to provide accurate prediction for efficiency and purity for a more complex biological sample. Thus, we use particles with continuous size distribution (2–32 μm) for separation demonstration under conditions of various flow rates, flow rate ratios and resistance ratios. We also use A549 cancer cell line with continuous size distribution (12–27 μm) as an added demonstration. Our results indicate inertial microfluidic devices possess the tunability that offers multiple ways to improve device performance for adaptation to different applications even after the devices are prototyped.
more »
« less
- PAR ID:
- 10210812
- Date Published:
- Journal Name:
- Micromachines
- Volume:
- 11
- Issue:
- 3
- ISSN:
- 2072-666X
- Page Range / eLocation ID:
- 287
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Size-based microfluidic filtration systems can be affected by clogging, which prevents their use in high-throughput and continuous applications. To address these concerns, we have developed two microfluidic lobe filters bioinspired by the filtration mechanism of two species of manta ray. These chips enable filtration of particles around 10–30 μm with precise control and high throughput by using two arrays of equally spaced filter lobes. For each filter design, we investigated multiple inlet flow rates and particle sizes to identify successful operational parameters. Filtration efficiency increases with fluid flow rate, suggesting that particle inertial effects play a key role in lobe filter separation. Microparticle filtration efficiencies up to 99% were obtainable with inlet flow rates of 20 mL min −1 . Each filter design successfully increased microparticle concentrations by a factor of two or greater at different inlet flow rates ranging from 6–16 mL min −1 . At higher inlet flow rates, ANSYS Fluent simulations of each device revealed a complex velocity profile that contains three local maxima and two inflection points. Ultimately, we show that distances from the lobe array to the closest local maxima and inflection point of the velocity profile can be used to successfully estimate lobe filtration efficiency at each operational flow rate.more » « less
-
Point-of-care (POC) diagnostic devices have been developing rapidly in recent years, but they are mainly using saliva instead of blood as a test sample. A highly efficient self-separation during the self-driven flow without power systems is desired for expanding the point-of-care diagnostic devices. Microfiltration stands out as a promising technique for blood plasma separation but faces limitations due to blood cell clogging, resulting in reduced separation speed and efficiency. These limitations are mainly caused by the high viscosity and hematocrit in the blood flow. A small increment in the hematocrit of the blood significantly increases the pressure needed for the blood plasma separation in the micro-filters and decreases the separation speed and efficiency. Addressing this challenge, this study explores the feasibility of diluting whole blood within a microfluidic device without external power systems. This study implemented a spiral microchannel utilizing the inertial focusing and Dean vortex effects to focus the red blood cells and extract the blood with lower hematocrit. The inertial migration of the particles during the capillary flow was first investigated experimentally; a maximum of 88% of the particles migrated to the bottom and top equilibrium positions in the optimized 350 × 60 μm (cross-sectional area, 5.8 aspect ratio) microchannel. With the optimized dimension of the microchannel, the whole blood samples within the physiological hematocrit range were tested in the experiments, and more than 10% of the hematocrit reduction was compared between the outer branch outlet and inner branch outlet in the 350 × 60 μm microchannel.more » « less
-
Abstract Circulating tumor cells (CTCs) are shed from primary tumors, circulate in the bloodstream and are capable of initiating metastasis at distant anatomical sites. The detection and molecular characterization of CTCs are pivotal for early-stage cancer diagnosis and prognosis. Recently, microfluidic technology has achieved significant progress in the separation of cells from complex and heterogeneous mixtures for many biomedical applications. Conventional microfluidic platforms exploit the difference in size between the particles to achieve separation, which makes them ineffective for sorting overlapping-sized CTCs. To address this issue, we propose a method using a spiral channel for label-free, and high throughput separation of CTCs coupling Dielectrophoresis (DEP) with inertial microfluidics. A numerical model has been developed to investigate the separation effectiveness of the device over a range of electrical voltage and flow rates. The presented channel is shown to effectively isolate similar-sized CTCs from the white blood cells (WBCs) in a single-stage separation process. Subsequently, optimum working parameters to enhance separation efficiency have been proposed. The hybrid microfluidic device can provide valuable insight into the development of a robust, inexpensive, and efficient platform for cell separation with reduced analysis time for future cancer research and treatment.more » « less
-
Paper-based microfluidics was initially developed for use in ultra-low-cost diagnostics powered passively by liquid wicking. However, there is significant untapped potential in using paper to internally guide porous microfluidic flows using externally applied pressure gradients. Here, we present a new technique for fabricating and utilizing low-cost polymer-laminated paper-based microfluidic devices using external pressure. Known as microfluidic pressure in paper (μPiP), devices fabricated by this technique are capable of sustaining a pressure gradient for use in precise liquid handling and manipulation applications similar to conventional microfluidic open-channel designs, but instead where fluid is driven directly through the porous paper structure. μPiP devices can be both rapidly prototyped or scalably manufactured and deployed at commercial scale with minimal time, equipment, and training requirements. We present an analysis of continuous pressure-driven flow in porous paper-based microfluidic channels and demonstrate broad applicability of this method in performing a variety of different liquid handling applications, including measuring red blood cell deformability and performing continuous free-flow DNA electrophoresis. This new platform offers a budget-friendly method for performing microfluidic operations for both academic prototyping and large-scale commercial device production.more » « less
An official website of the United States government

