skip to main content

This content will become publicly available on February 14, 2023

Title: Microfluidic pressure in paper (μPiP): rapid prototyping and low-cost liquid handling for on-chip diagnostics
Paper-based microfluidics was initially developed for use in ultra-low-cost diagnostics powered passively by liquid wicking. However, there is significant untapped potential in using paper to internally guide porous microfluidic flows using externally applied pressure gradients. Here, we present a new technique for fabricating and utilizing low-cost polymer-laminated paper-based microfluidic devices using external pressure. Known as microfluidic pressure in paper (μPiP), devices fabricated by this technique are capable of sustaining a pressure gradient for use in precise liquid handling and manipulation applications similar to conventional microfluidic open-channel designs, but instead where fluid is driven directly through the porous paper structure. μPiP devices can be both rapidly prototyped or scalably manufactured and deployed at commercial scale with minimal time, equipment, and training requirements. We present an analysis of continuous pressure-driven flow in porous paper-based microfluidic channels and demonstrate broad applicability of this method in performing a variety of different liquid handling applications, including measuring red blood cell deformability and performing continuous free-flow DNA electrophoresis. This new platform offers a budget-friendly method for performing microfluidic operations for both academic prototyping and large-scale commercial device production.
; ;
Award ID(s):
Publication Date:
Journal Name:
The Analyst
Page Range or eLocation-ID:
587 to 596
Sponsoring Org:
National Science Foundation
More Like this
  1. The accurate measurement of wall zeta potentials and solute–surface interaction length scales for electrolyte and non-electrolyte solutes, respectively, is critical to the design of many biomedical and microfluidic applications. We present a novel microfluidic approach using diffusioosmosis for measuring either the zeta potentials or the characteristic interaction length scales for surfaces exposed to, respectively, electrolyte or non-electrolyte solutes. When flows containing different solute concentrations merge in a junction, local solute concentration gradients can drive diffusioosmotic flow due to electrokinetic, steric, and other interactions between the solute molecules and solid surfaces. We demonstrate a microfluidic system consisting of a long, narrow pore connecting two large side channels in which solute concentration gradients drive diffusioosmosis within the pore, resulting in predictable fluid velocity/pressure and solute profiles. Furthermore, we present analytical results and a methodology to determine the zeta potential or interaction length scale for the pore surfaces based on the solute concentrations in the main side channels, the flow rate in the pore, and the pressure drop across the pore. We apply this method to the experimental data of Lee et al. to predict the zeta potentials of their system, and we use 3D numerical simulations to validate the theory and showmore »that end effects caused by the junctions are negligible for a wide range of parameters. Because the dynamics in the proposed system are driven by diffusioosmosis, this technique does not suffer from certain disadvantages associated with the use of sensitive electronics in traditional zeta potential measurement approaches such as streaming potential, streaming current, or electroosmosis. To the best of our knowledge this is the first flow-based approach to characterize surface/solute interactions with non-electrolyte solutes.« less
  2. There has been an increasing need of technologies to manufacturing chemical and biological sensors for various applications ranging from environmental monitoring to human health monitoring. Currently, manufacturing of most chemical and biological sensors relies on a variety of standard microfabrication techniques, such as physical vapor deposition and photolithography, and materials such as metals and semiconductors. Though functional, they are hampered by high cost materials, rigid substrates, and limited surface area. Paper based sensors offer an intriguing alternative that is low cost, mechanically flexible, has the inherent ability to filter and separate analytes, and offers a high surface area, permeable framework advantageous to liquid and vapor sensing. However, a major drawback is that standard microfabrication techniques cannot be used in paper sensor fabrication. To fabricate sensors on paper, low temperature additive techniques must be used, which will require new manufacturing processes and advanced functional materials. In this work, we focus on using aerosol jet printing as a highresolution additive process for the deposition of ink materials to be used in paper-based sensors. This technique can use a wide variety of materials with different viscosities, including materials with high porosity and particles inherent to paper. One area of our efforts involves creatingmore »interdigitated microelectrodes on paper in a one-step process using commercially available silver nanoparticle and carbon black based conductive inks. Another area involves use of specialized filter papers as substrates, such as multi-layered fibrous membrane paper consisting of a poly(acrylonitrile) nanofibrous layer and a nonwoven poly(ethylene terephthalate) layer. The poly(acrylonitrile) nanofibrous layer are dense and smooth enough to allow for high resolution aerosol jet printing. With additively fabricated electrodes on the paper, molecularly-functionalized metal nanoparticles are deposited by molecularly-mediated assembling, drop casting, and printing (sensing and electrode materials), allowing full functionalization of the paper, and producing sensor devices with high surface area. These sensors, depending on the electrode configuration, are used for detection of chemical and biological species in vapor phase, such as water vapor and volatile organic compounds, making them applicable to human performance monitoring. These paper based sensors are shown to display an enhancement in sensitivity, as compared to control devices fabricated on non-porous polyimide substrates. These results have demonstrated the feasibility of paper-based printed devices towards manufacturing of a fully wearable, highly-sensitive, and wireless human performance monitor coupled to flexible electronics with the capability to communicate wirelessly to a smartphone or other electronics for data logging and analysis.« less
  3. Abstract

    While vat photopolymerization has many advantages over soft lithography in fabricating microfluidic devices, including efficiency and shape complexity, it has difficulty achieving well-controlled micrometer-sized (smaller than 100 μm) channels in the layer building direction. The considerable light penetration depth of transparent resin leads to over-curing that inevitably cures the residual resin inside flow channels, causing clogs. In this paper, a 3D printing process — in-situ transfer vat photopolymerization is reported to solve this critical over-curing issue in fabricating microfluidic devices. We demonstrate microchannels with highZ-resolution (within 10 μm level) and high accuracy (within 2 μm level) using a general method with no requirements on liquid resins such as reduced transparency nor leads to a reduced fabrication speed. Compared with all other vat photopolymerization-based techniques specialized for microfluidic channel fabrication, our universal approach is compatible with commonly used 405 nm light sources and commercial photocurable resins. The process has been verified by multifunctional devices, including 3D serpentine microfluidic channels, microfluidic valves, and particle sorting devices. This work solves a critical barrier in 3D printing microfluidic channels using the high-speed vat photopolymerization process and broadens the material options. It also significantly advances vat photopolymerization’s use in applications requiring small gaps with high accuracy in theZ-direction.

  4. Diatoms are a group of single-celled photosynthetic algae that use biochemical pathways to bio-mineralize and self-assemble three-dimensional photonic crystals with unique photonic and micro- & nano-fluidic properties. In recent years, diatom biosilica has been used in surface-enhanced Raman scattering (SERS) based optofluidic sensors for detection of a variety of chemical and biological molecules. In this paper, we present a study to develop a microfluidic pumping system using super-hydrophilic diatom thin films. The desire to develop such a system stems from the requirement to create a low-cost, self-powered microfluidic pumping system that can sustain a continuous flow over an extended period of time. The diatom biosilica acts not only as the driving force behind the flow, but also serves as ultra-sensitive SERS substrates that allows for trace detection of various molecules. Liquid is drawn from a reservoir to the tip of a 150μm inner diameter capillary tube positioned directly over the diatom film. A thin and long horizontal reservoir is used to prevent flooding on the diatom film when the liquid is initially drawn to the diatom film through a capillary tube from the reservoir. The connection of the meniscus from the capillary to the film was maintained from a horizontalmore »reservoir for a recorded time of 20 hours and 32 minutes before the partially filled reservoir emptied. Flow rates of 0.38, 0.22 and 0.16µL/min were achieved for square biosilica thin films of 49mm2, 25mm2, and 9mm2 at a temperature of 63̊F and 45% relative humidity respectively. A temperature-controlled system was introduced for the 49mm2 substrate and flow rates of 0.60, 0.82, 0.93, and 1.15µL/min were observed at 72, 77, 86, and 95̊F at 21% relative humidity respectively. More testing and analysis will be performed to test the operation limits of the proposed self-powered microfluidic system.« less
  5. Abstract

    The desire for cost-effective strategies for producing organic electronic devices has led to many new methods for the organic semiconductor layer deposition; however, manufacturing contacts remains an expensive technique due to the high cost of both the materials used and the processing necessary for their patterning. In this work, we present a method for contact deposition and patterning, which overcomes these limitations and allows fabrication of all-printed organic thin-film transistors on paper. The method relies on depositing contacts using aerosol spray and patterning them with a digitally printed mask from an office laser printer, at ambient temperature and pressure. This technique, which we have denoted aerosol spray laser lithography, is cost-effective and extremely versatile in terms of material choice and electrode geometry. As the processing temperature does not exceed 155 °C, it is compatible with a variety of substrates, including plastic or paper. The success of this method marks an opportunity for a rapid, scalable, and low-cost alternative to current electrode-manufacturing techniques for development of flexible, large-area, electronic applications.