Abstract Macrophages hold vital roles in immune defense, wound healing, and tissue homeostasis, and have the exquisite ability to sense and respond to dynamically changing cues in their microenvironment. Much of our understanding of their behavior has been derived from studies performed using in vitro culture systems, in which the cell environment can be precisely controlled. Recent advances in miniaturized culture platforms also offer the ability to recapitulate some features of the in vivo environment and analyze cellular responses at the single‐cell level. Since macrophages are sensitive to their surrounding environments, the specific conditions in both macro‐ and micro‐scale cultures likely contribute to observed responses. In this study, we investigate how the presence of neighboring cells influence macrophage activation following proinflammatory stimulation in both bulk and micro‐scale culture. We found that in bulk cultures, higher seeding density negatively regulated the average TNF‐α secretion from individual macrophages in response to inflammatory agonists, and this effect was partially caused by the reduced cell‐to‐media volume ratio. In contrast, studies conducted using microwells to isolate single cells and groups of cells revealed that increasing numbers of cells positively influences their inflammatory activation, suggesting that the absolute cell numbers in the system may be important. In addition, a single inflammatory cell enhanced the inflammatory state of a small group of cells. Overall, this work helps to better understand how variations of macroscopic and microscopic culture environments influence studies in macrophage biology and provides insight into how the presence of neighboring cells and the soluble environment influences macrophage activation.
more »
« less
Microwell-Based Assay Revealed Population Dependent Controls of Macrophage Activation
Macrophages play a key role in the innate immune system, and their activation is tightly regulated to avoid excess and harmful inflammation. Studies have revealed the roles of soluble and adhesive cues in the regulation of macrophage polarization. Furthermore, recent studies also show that macrophage signaling within a population is critical for coordinating a collective response [1, 2]. However, how such coordination arises from groups of cells, and how the collective behavior of small groups of cells compared to single, isolated cells, remains to be investigated. In this study, we attempt to address this problem by utilizing a microwell-based platform to probe the responses of cells in isolation versus cells in small groups following a pro-inflammatory stimulation. Our study suggests that expression of the inflammatory marker iNOS depends on the communication among groups of cells, and this regulation may also depend on the absolute cell numbers. This experimental platform may help further explore different mechanisms utilized to regulate collective inflammatory responses.
more »
« less
- Award ID(s):
- 1841509
- PAR ID:
- 10210817
- Date Published:
- Journal Name:
- IEEE Biomedical Engineering Society Annual Meeting (BMES 2020)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Macrophages are innate immune cells that adhere to the extracellular matrix within tissues. However, how matrix properties regulate their function remains poorly understood. Here, we report that the adhesive microenvironment tunes the macrophage inflammatory response through the transcriptional coactivator YAP. We find that adhesion to soft hydrogels reduces inflammation when compared to adhesion on stiff materials and is associated with reduced YAP expression and nuclear localization. Substrate stiffness and cytoskeletal polymerization, but not adhesive confinement nor contractility, regulate YAP localization. Furthermore, depletion of YAP inhibits macrophage inflammation, whereas overexpression of active YAP increases inflammation. Last, we show in vivo that soft materials reduce expression of inflammatory markers and YAP in surrounding macrophages when compared to stiff materials. Together, our studies identify YAP as a key molecule for controlling inflammation and sensing stiffness in macrophages and may have broad implications in the regulation of macrophages in health and disease.more » « less
-
Macrophages are innate immune cells that help wounds heal. Here, we study the potential immunomodulatory effects of negative-pressure wound therapy (NPWT) materials on the macrophage inflammatory response. We compared the effects of two materials, Granufoam™ (GF) and Veraflo Cleanse™ (VC), on macrophage function in vitro. We find that both materials cause reduced expression of inflammatory genes, such as TNF and IL1B, in human macrophages stimulated with bacterial lipopolysaccharide (LPS) and interferon-gamma (IFNγ). Relative to adherent glass control surfaces, VC discourages macrophage adhesion and spreading, and may potentially sequester LPS/IFNγ and cytokines that the cells produce. GF, on the other hand, was less suppressive of inflammation, supported macrophage adhesion and spreading better than VC, and sequestered lesser quantities of LPS/IFNγ in comparison to VC. The control dressing material cotton gauze (CT) was also immunosuppressive, capable of TNF-α retention and LPS/IFNγ sequestration. Our findings suggest that NPWT material interactions with cells, as well as soluble factors including cytokines and LPS, can modulate the immune response, independent of vacuum application. We have also established methodological strategies for studying NPWT materials and reveal the potential utility of cell-based in vitro studies for elucidating biological effects of NPWT materials.more » « less
-
For decades, investigators have studied the interaction of Mycobacterium tuberculosis (Mtb) with macrophages, which serve as a major cellular niche for the bacilli. Because Mtb are prone to aggregation, investigators rely on varied methods to disaggregate the bacteria for these studies. Here, we examined the impact of routinely used preparation methods on bacterial cell envelope integrity, macrophage inflammatory responses, and intracellular Mtb survival. We found that both gentle sonication and filtering damaged the mycobacterial cell envelope and markedly impacted the outcome of infections in mouse bone marrow-derived macrophages. Unexpectedly, sonicated bacilli were hyperinflammatory, eliciting dramatically higher TLR2-dependent gene expression and elevated secretion of IL-1β and TNF-α. Despite evoking enhanced inflammatory responses, sonicated bacilli replicated normally in macrophages. In contrast, Mtb that had been passed through a filter induced little inflammatory response, and they were attenuated in macrophages. Previous work suggests that the mycobacterial cell envelope lipid, phthiocerol dimycocerosate (PDIM), dampens macrophage inflammatory responses to Mtb. However, we found that the impact of PDIM depended on the method used to prepare Mtb. In conclusion, widely used methodologies to disaggregate Mtb may introduce experimental artifacts in Mtb-host interaction studies, including alteration of host inflammatory signaling, intracellular bacterial survival, and interpretation of bacterial mutants.more » « less
-
Extracellular vesicles (EVs) have emerged as promising acellular tools for modulating immune responses for tissue engineering applications. This study explores the potential of human fibroblast-derived EVs delivered within a three-dimensional (3D) injectable scaffold composed of polycaprolactone (PCL) nanofibers and collagen (PNCOL) to reprogram macrophage behavior and support scaffold integrity under inflammatory conditions. EVs were successfully isolated from human fibroblasts using ultracentrifugation and characterized for purity, size distribution and surface markers (CD63 and CD9). Macrophage-laden PNCOL scaffolds were prepared under three conditions: macrophage-only (MP), fibroblast co-encapsulated (F-MP), and EV-encapsulated (EV-MP) groups. Structural integrity was assessed via scanning electron microscopy and Masson’s trichrome staining, while immunomodulatory effects were evaluated through metabolic assays, gene expression profiling, and immunohistochemistry for macrophage polarization markers (CD80, CD206). When co-encapsulated with pro-inflammatory (M1) macrophages in PNCOL scaffolds, fibroblast-derived EVs preserved scaffold structure and significantly enhanced macrophage metabolic activity compared to the control (MP) and other experimental group (F-MP). The gene expression and immunohistochemistry data demonstrated substantial upregulation of anti-inflammatory markers (TGF-β, CD163, and CCL18) and surface protein CD206, indicating a phenotypic shift toward M2-like macrophages for EV-encapsulated scaffolds relative to the other groups. The findings of this study demonstrate that fibroblast-derived EVs integrated into injectable PCL–collagen scaffolds offer a viable, cell-free approach to modulate inflammation, preserve scaffold structure, and support regenerative healing. This strategy holds significant promise for advancing immuno-instructive platforms in regenerative medicine, particularly in settings where conventional cell therapies face limitations in survival, cost, or safety.more » « less
An official website of the United States government

