skip to main content


Title: YAP-mediated mechanotransduction tunes the macrophage inflammatory response
Macrophages are innate immune cells that adhere to the extracellular matrix within tissues. However, how matrix properties regulate their function remains poorly understood. Here, we report that the adhesive microenvironment tunes the macrophage inflammatory response through the transcriptional coactivator YAP. We find that adhesion to soft hydrogels reduces inflammation when compared to adhesion on stiff materials and is associated with reduced YAP expression and nuclear localization. Substrate stiffness and cytoskeletal polymerization, but not adhesive confinement nor contractility, regulate YAP localization. Furthermore, depletion of YAP inhibits macrophage inflammation, whereas overexpression of active YAP increases inflammation. Last, we show in vivo that soft materials reduce expression of inflammatory markers and YAP in surrounding macrophages when compared to stiff materials. Together, our studies identify YAP as a key molecule for controlling inflammation and sensing stiffness in macrophages and may have broad implications in the regulation of macrophages in health and disease.  more » « less
Award ID(s):
1763272
NSF-PAR ID:
10222848
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Science Advances
Volume:
6
Issue:
49
ISSN:
2375-2548
Page Range / eLocation ID:
eabb8471
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Formation of epithelial structures of variegated geometries and sizes is essential for organogenesis, tumor growth, and wound repair. Although epithelial cells are predisposed with potential for multicellular clustering, it remains unclear whether immune cells and mechanical cues from their microenvironment influence this process. To explore this possibility, we cocultured human mammary epithelial cells with prepolarized macrophages on soft or stiff hydrogels. In the presence of M1 (proinflammatory) macrophages on soft matrices, epithelial cells migrated faster and subsequently formed larger multicellular clusters compared to cocultures with M0 (unpolarized) or M2 (anti‐inflammatory) macrophages. By contrast, stiff matrices disabled active clustering of epithelial cells due to their enhanced migration and cell–ECM adhesion, regardless of macrophage polarization. We found that the copresence of soft matrices and M1 macrophages reduced focal adhesions, but enhanced fibronectin deposition and nonmuscle myosin‐IIA expression, which altogether optimize conditions for epithelial clustering. Upon ROCK inhibition, epithelial clustering was abrogated, indicating a requirement for optimized cellular forces. In these cocultures, TNF‐α secretion was the highest with M1 macrophages and TGF‐β secretion was exclusively detectable in case of M2 macrophages on soft gels, which indicated potential role of macrophage secreted factors in the observed epithelial clustering. Indeed, exogenous addition of TGF‐β promoted epithelial clustering with M1 coculture on soft gels. According to our findings, optimization of both mechanical and immune factors can tune epithelial clustering responses, which could have implications in tumor growth, fibrosis, and would healing.

     
    more » « less
  2. null (Ed.)
    Macrophages play a key role in the innate immune system, and their activation is tightly regulated to avoid excess and harmful inflammation. Studies have revealed the roles of soluble and adhesive cues in the regulation of macrophage polarization. Furthermore, recent studies also show that macrophage signaling within a population is critical for coordinating a collective response [1, 2]. However, how such coordination arises from groups of cells, and how the collective behavior of small groups of cells compared to single, isolated cells, remains to be investigated. In this study, we attempt to address this problem by utilizing a microwell-based platform to probe the responses of cells in isolation versus cells in small groups following a pro-inflammatory stimulation. Our study suggests that expression of the inflammatory marker iNOS depends on the communication among groups of cells, and this regulation may also depend on the absolute cell numbers. This experimental platform may help further explore different mechanisms utilized to regulate collective inflammatory responses. 
    more » « less
  3. Macrophages are innate immune cells that help wounds heal. Here, we study the potential immunomodulatory effects of negative-pressure wound therapy (NPWT) materials on the macrophage inflammatory response. We compared the effects of two materials, Granufoam™ (GF) and Veraflo Cleanse™ (VC), on macrophage function in vitro. We find that both materials cause reduced expression of inflammatory genes, such as TNF and IL1B, in human macrophages stimulated with bacterial lipopolysaccharide (LPS) and interferon-gamma (IFNγ). Relative to adherent glass control surfaces, VC discourages macrophage adhesion and spreading, and may potentially sequester LPS/IFNγ and cytokines that the cells produce. GF, on the other hand, was less suppressive of inflammation, supported macrophage adhesion and spreading better than VC, and sequestered lesser quantities of LPS/IFNγ in comparison to VC. The control dressing material cotton gauze (CT) was also immunosuppressive, capable of TNF-α retention and LPS/IFNγ sequestration. Our findings suggest that NPWT material interactions with cells, as well as soluble factors including cytokines and LPS, can modulate the immune response, independent of vacuum application. We have also established methodological strategies for studying NPWT materials and reveal the potential utility of cell-based in vitro studies for elucidating biological effects of NPWT materials. 
    more » « less
  4. Abstract

    Macrophages are a predominant immune cell population that drive inflammatory responses and exhibit transitions in phenotype and function during tissue remodeling in disease and repair. Thus, engineering an immunomodulatory biomaterial has significant implications for resolving inflammation. Here, a biomimetic and photoresponsive hyaluronan (HA) hydrogel nanocomposite with tunable 3D extracellular matrix (ECM) adhesion sites for dynamic macrophage immunomodulation is engineered. Photodegradative alkoxylphenacyl‐based polycarbonate (APP) nanocomposites are exploited to permit user‐controlled Arg–Gly–Asp (RGD) adhesive peptide release and conjugation to a HA‐based ECM for real‐time integrin activation of macrophages encapsulated in 3D HA–APP nanocomposite hydrogels. It is demonstrated that photocontrolled 3D ECM–RGD peptide conjugation can activate αvβ3 integrin of macrophages, and periodic αvβ3 integrin activation can enhance anti‐inflammatory M2 macrophage polarization. Altogether, an emerging use of biomimetic, photoresponsive, and bioactive HA–APP nanocomposite hydrogel is highlighted to command 3D cell–ECM interactions for modulating macrophage polarization, which may shed light on cell–ECM interactions in innate immunity and inspire new biomaterial‐based immunomodulatory therapies.

     
    more » « less
  5. Endothelial mechanobiology is a key consideration in the progression of vascular dysfunction, including atherosclerosis. However mechanistic connections between the clinically associated physical stimuli, vessel stiffness and shear stress, and how they interact to modulate plaque progression remain incompletely characterized. Vessel-chip systems are excellent candidates for modeling vascular mechanobiology as they may be engineered from the ground up, guided by the mechanical parameters present in human arteries and veins, to recapitulate key features of the vasculature. Here, we report extensive validation of a vessel-chip model of endothelial yes-associated protein (YAP) mechanobiology, a protein sensitive to both matrix stiffness and shearing forces and, importantly, implicated in atherosclerotic progression. Our model captures the established endothelial mechanoresponse, with endothelial alignment, elongation, reduction of adhesion molecules, and YAP cytoplasmic retention under high laminar shear. Conversely, we observed disturbed morphology, inflammation, and nuclear partitioning under low, high, and high oscillatory shear. Examining targets of YAP transcriptional co-activation, connective tissue growth factor (CTGF) is strongly downregulated by high laminar shear, whereas it is strongly upregulated by low shear or oscillatory flow. Ankyrin repeat domain 1 (ANKRD1) is only upregulated by high oscillatory shear. Verteporfin inhibition of YAP reduced the expression of CTGF but did not affect ANKRD1. Lastly, substrate stiffness modulated the endothelial shear mechanoresponse. Under high shear, softer substrates showed the lowest nuclear localization of YAP whereas stiffer substrates increased nuclear localization. Low shear strongly increased nuclear localization of YAP across stiffnesses. Together, we have validated a model of endothelial mechanobiology and describe a clinically relevant biological connection between matrix stiffness, shear stress, and endothelial activation via YAP mechanobiology. 
    more » « less