skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rapid isolation of circulating cancer associated fibroblasts by acoustic microstreaming for assessing metastatic propensity of breast cancer patients
We demonstrate a label free and high-throughput microbubble-based acoustic microstreaming technique to isolate rare circulating cells such as circulating cancer associated fibroblasts (cCAFs) in addition to circulating tumor cells (CTCs) and immune cells ( i.e. leukocytes) from clinically diagnosed patients with a capture efficiency of 94% while preserving cell functional integrity within 8 minutes. The microfluidic device is self-pumping and was optimized to increase flow rate and achieve near perfect capturing of rare cells enabled by having a trapping capacity above the acoustic vortex saturation concentration threshold. Our approach enables rapid isolation of CTCs, cCAFs and their associated clusters from blood samples of cancer patients at different stages. By examining the combined role of cCAFs and CTCs in early cancer onset and metastasis progression, the device accurately diagnoses both cancer and the metastatic propensity of breast cancer patients. This was confirmed by flow cytometry where we observed that metastatic breast cancer blood samples had significantly higher percentage of exhausted CD8 + T cells expressing programmed cell death protein 1 (PD1), higher number of CD4 + T regulatory cells and T helper cells. We show for the first time that our lateral cavity acoustic transducers (LCATs)-based approach can thus be developed into a metastatic propensity assay for clinical usage by elucidating cancer immunological responses and the complex relationships between CTCs and its companion tumor microenvironment.  more » « less
Award ID(s):
1841509 1841473
PAR ID:
10210865
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Lab on a Chip
ISSN:
1473-0197
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Profiling circulating tumour cells (CTCs) in cancer patients' blood samples is critical to understand the complex and dynamic nature of metastasis. This task is challenged by the fact that CTCs are not only extremely rare in circulation but also highly heterogeneous in their molecular programs and cellular functions. Here we report a combinational approach for the simultaneous biochemical and functional phenotyping of patient-derived CTCs, using an integrated inertial ferrohydrodynamic cell separation (i 2 FCS) method and a single-cell microfluidic migration assay. This combinatorial approach offers unique capability to profile CTCs on the basis of their surface expression and migratory characteristics. We achieve this using the i 2 FCS method that successfully processes whole blood samples in a tumor cell marker and size agnostic manner. The i 2 FCS method enables an ultrahigh blood sample processing throughput of up to 2 × 10 5 cells s −1 with a blood sample flow rate of 60 mL h −1 . Its short processing time (10 minutes for a 10 mL sample), together with a close-to-complete CTC recovery (99.70% recovery rate) and a low WBC contamination (4.07-log depletion rate by removing 99.992% of leukocytes), results in adequate and functional CTCs for subsequent studies in the single-cell migration device. For the first time, we employ this new approach to query CTCs with single-cell resolution in accordance with their expression of phenotypic surface markers and migration properties, revealing the dynamic phenotypes and the existence of a high-motility subpopulation of CTCs in blood samples from metastatic lung cancer patients. This method could be adopted to study the biological and clinical value of invasive CTC phenotypes. 
    more » « less
  2. Circulating tumor cell (CTC) clusters that are shed from the primary tumor into the bloodstream are associated with a poor prognosis, elevated metastatic potential, higher proliferation rate, and distinct molecular features compared to single CTCs. Studying CTC clusters may give us information on the differences in the genetic profiles, somatic mutations, and epigenetic changes in circulating cells compared to the primary tumor and metastatic sites. Microfluidic systems offer the means of studying CTC clusters through the ability to efficiently isolate these rare cells from the whole blood of patients in a liquid biopsy. Microfluidics can also be used to develop in vitro models of CTC clusters and make possible their characterization and analysis. Ultimately, microfluidic systems can offer the means to gather insight on the complexities of the metastatic process, the biology of cancer, and the potential for developing novel or personalized therapies. In this review, we aim to discuss the advantages and challenges of the existing microfluidic systems for working with CTC clusters. We hope that an improved understanding of the role microfluidics can play in isolation, formation, and characterization of CTC clusters, which can lead to increased sophistication of microfluidic platforms in cancer research. 
    more » « less
  3. Tumor-initiating cells with reprogramming plasticity or stem-progenitor cell properties (stemness) are thought to be essential for cancer development and metastatic regeneration in many cancers; however, elucidation of the underlying molecular network and pathways remains demanding. Combining machine learning and experimental investigation, here we report CD81, a tetraspanin transmembrane protein known to be enriched in extracellular vesicles (EVs), as a newly identified driver of breast cancer stemness and metastasis. Using protein structure modeling and interface prediction-guided mutagenesis, we demonstrate that membrane CD81 interacts with CD44 through their extracellular regions in promoting tumor cell cluster formation and lung metastasis of triple negative breast cancer (TNBC) in human and mouse models. In-depth global and phosphoproteomic analyses of tumor cells deficient with CD81 or CD44 unveils endocytosis-related pathway alterations, leading to further identification of a quality-keeping role of CD44 and CD81 in EV secretion as well as in EV-associated stemness-promoting function. CD81 is coexpressed along with CD44 in human circulating tumor cells (CTCs) and enriched in clustered CTCs that promote cancer stemness and metastasis, supporting the clinical significance of CD81 in association with patient outcomes. Our study highlights machine learning as a powerful tool in facilitating the molecular understanding of new molecular targets in regulating stemness and metastasis of TNBC. 
    more » « less
  4. Abstract Cancer metastasis is the leading cause of death for those afflicted with cancer. In cancer metastasis, the cancer cells break off from the primary tumor, penetrate nearby blood vessels, and attach and extravasate out of the vessels to form secondary tumors at distant organs. This makes extravasation a critical step of the metastatic cascade. Herein, with a focus on triple‐negative breast cancer, the role that the prospective secondary tumor microenvironment's mechanical properties play in circulating tumor cells' extravasation is reviewed. Specifically, the effects of the physically regulated vascular endothelial glycocalyx barrier element, vascular flow factors, and subendothelial extracellular matrix mechanical properties on cancer cell extravasation are examined. The ultimate goal of this review is to clarify the physical mechanisms that drive triple‐negative breast cancer extravasation, as these mechanisms may be potential new targets for anti‐metastasis therapy. 
    more » « less
  5. Methods to separate circulating tumor cells (CTCs) from blood samples were intensively researched in order to understand the metastatic process and develop corresponding clinical assays. However current methods faced challenges that stemmed from CTCs' heterogeneity in their biological markers and physical morphologies. To this end, we developed integrated ferrohydrodynamic cell separation (iFCS), a scheme that separated CTCs independent of their surface antigen expression and physical characteristics. iFCS integrated both diamagnetophoresis of CTCs and magnetophoresis of blood cells together via a magnetic liquid medium, ferrofluid, whose magnetization could be tuned by adjusting its magnetic volume concentration. In this paper, we presented the fundamental theory of iFCS and its specific application in CTC separation. Governing equations of iFCS were developed to guide its optimization process. Three critical parameters that affected iFCS's cell separation performance were determined and validated theoretically and experimentally. These parameters included the sample flow rate, the volumetric concentration of magnetic materials in the ferrofluid, and the gradient of the magnetic flux density. We determined these optimized parameters in an iFCS device that led to a high recovery CTC separation in both spiked and clinical samples. 
    more » « less