skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Anti-Biofouling Strategies for Long-Term Continuous Use of Implantable Biosensors
The growing trend for personalized medicine calls for more reliable implantable biosensors that are capable of continuously monitoring target analytes for extended periods (i.e., >30 d). While promising biosensors for various applications are constantly being developed in the laboratories across the world, many struggle to maintain reliable functionality in complex in vivo environments over time. In this review, we explore the impact of various biotic and abiotic failure modes on the reliability of implantable biosensors. We discuss various design considerations for the development of chronically reliable implantable biosensors with a specific focus on strategies to combat biofouling, which is a fundamental challenge for many implantable devices. Briefly, we introduce the process of the foreign body response and compare the in vitro and the in vivo performances of state-of-the-art implantable biosensors. We then discuss the latest development in material science to minimize and delay biofouling including the usage of various hydrophilic, biomimetic, drug-eluting, zwitterionic, and other smart polymer materials. We also explore a number of active anti-biofouling approaches including stimuli-responsive materials and mechanical actuation. Finally, we conclude this topical review with a discussion on future research opportunities towards more reliable implantable biosensors.  more » « less
Award ID(s):
1944480
NSF-PAR ID:
10211039
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Chemosensors
Volume:
8
Issue:
3
ISSN:
2227-9040
Page Range / eLocation ID:
66
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Biofouling on the surface of implanted medical devices and biosensors severely hinders device functionality and drastically shortens device lifetime. Poly(ethylene glycol) and zwitterionic polymers are currently considered “gold‐standard” device coatings to reduce biofouling. To discover novel anti‐biofouling materials, a combinatorial library of polyacrylamide‐based copolymer hydrogels is created, and their ability is screened to prevent fouling from serum and platelet‐rich plasma in a high‐throughput parallel assay. It is found that certain nonintuitive copolymer compositions exhibit superior anti‐biofouling properties over current gold‐standard materials, and machine learning is used to identify key molecular features underpinning their performance. For validation, the surfaces of electrochemical biosensors are coated with hydrogels and their anti‐biofouling performance in vitro and in vivo in rodent models is evaluated. The copolymer hydrogels preserve device function and enable continuous measurements of a small‐molecule drug in vivo better than gold‐standard coatings. The novel methodology described enables the discovery of anti‐biofouling materials that can extend the lifetime of real‐time in vivo sensing devices.

     
    more » « less
  2. Dopamine is an essential neurotransmitter for daily cognitive functions controlling many neurophysiological processes including memory, cognition, and physical control. Development of analytical methods and sensors to detect dopamine is important for health monitoring and neurological research. This review provides an overview of recent advances in the development of electrochemical catalytic biosensors based on enzyme and enzyme-mimetic materials and discusses their potential applications for measurements of dopamine in biological fluids. The first part of the review summarizes and critically assesses the different types of enzymes and enzyme mimetic materials that can be used to catalytically convert dopamine, followed by a discussion of the biosensor’s fabrication, key design parameters, and detection mechanism on various electrode platforms ranging from single-use screen-printed electrodes to microneedles and implantable microelectrodes. The second part provides examples of measurements of dopamine in biological samples, including saliva, urine, serum, cell cultures, and brain tissue. We conclude with a summary of advantages and limitations of these devices in the clinical field, and an outlook to future research towards the implementation and broader adoption of electrochemical biosensors in neurophysiology, pharmacology, and the clinical field.

     
    more » « less
  3. null (Ed.)
    A recent development in portable biosensors allows rapid, accurate, and on-site detection of biomarkers, which helps to prevent disease spread by the control of sources. Less invasive sample collection is necessary to use portable biosensors in remote environments for accurate on-site diagnostics and testing. For non- or minimally invasive sampling, easily accessible body fluids, such as saliva, sweat, blood, or urine, have been utilized. It is also imperative to find accurate biomarkers to provide better clinical intervention and treatment at the onset of disease. At the same time, these reliable biomarkers can be utilized to monitor the progress of the disease. In this review, we summarize the most recent development of portable biosensors to detect various biomarkers accurately. In addition, we discuss ongoing issues and limitations of the existing systems and methods. Lastly, we present the key requirements of portable biosensors and discuss ideas for functional enhancements. 
    more » « less
  4. Abstract

    Soft (flexible and stretchable) biosensors have great potential in real-time and continuous health monitoring of various physiological factors, mainly due to their better conformability to soft human tissues and organs, which maximizes data fidelity and minimizes biological interference. Most of the early soft sensors focused on sensing physical signals. Recently, it is becoming a trend that novel soft sensors are developed to sense and monitor biochemical signalsin situin real biological environments, thus providing much more meaningful data for studying fundamental biology and diagnosing diverse health conditions. This is essential to decentralize the healthcare resources towards predictive medicine and better disease management. To meet the requirements of mechanical softness and complex biosensing, unconventional materials, and manufacturing process are demanded in developing biosensors. In this review, we summarize the fundamental approaches and the latest and representative design and fabrication to engineer soft electronics (flexible and stretchable) for wearable and implantable biochemical sensing. We will review the rational design and ingenious integration of stretchable materials, structures, and signal transducers in different application scenarios to fabricate high-performance soft biosensors. Focus is also given to how these novel biosensors can be integrated into diverse important physiological environments and scenariosin situ, such as sweat analysis, wound monitoring, and neurochemical sensing. We also rethink and discuss the current limitations, challenges, and prospects of soft biosensors. This review holds significant importance for researchers and engineers, as it assists in comprehending the overarching trends and pivotal issues within the realm of designing and manufacturing soft electronics for biochemical sensing.

     
    more » « less
  5. SU-8 is an epoxy-based, negative-tone photoresist that has been extensively utilized to fabricate myriads of devices including biomedical devices in the recent years. This paper first reviews the biocompatibility of SU-8 for in vitro and in vivo applications. Surface modification techniques as well as various biomedical applications based on SU-8 are also discussed. Although SU-8 might not be completely biocompatible, existing surface modification techniques, such as O2 plasma treatment or grafting of biocompatible polymers, might be sufficient to minimize biofouling caused by SU-8. As a result, a great deal of effort has been directed to the development of SU-8-based functional devices for biomedical applications. This review includes biomedical applications such as platforms for cell culture and cell encapsulation, immunosensing, neural probes, and implantable pressure sensors. Proper treatments of SU-8 and slight modification of surfaces have enabled the SU-8 as one of the unique choices of materials in the fabrication of biomedical devices. Due to the versatility of SU-8 and comparative advantages in terms of improved Young’s modulus and yield strength, we believe that SU-8-based biomedical devices would gain wider proliferation among the biomedical community in the future. 
    more » « less