skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 14 until 2:00 AM ET on Saturday, November 15 due to maintenance. We apologize for the inconvenience.


Title: Design and manufacturing of soft electronics for in situ biochemical sensing
Abstract Soft (flexible and stretchable) biosensors have great potential in real-time and continuous health monitoring of various physiological factors, mainly due to their better conformability to soft human tissues and organs, which maximizes data fidelity and minimizes biological interference. Most of the early soft sensors focused on sensing physical signals. Recently, it is becoming a trend that novel soft sensors are developed to sense and monitor biochemical signalsin situin real biological environments, thus providing much more meaningful data for studying fundamental biology and diagnosing diverse health conditions. This is essential to decentralize the healthcare resources towards predictive medicine and better disease management. To meet the requirements of mechanical softness and complex biosensing, unconventional materials, and manufacturing process are demanded in developing biosensors. In this review, we summarize the fundamental approaches and the latest and representative design and fabrication to engineer soft electronics (flexible and stretchable) for wearable and implantable biochemical sensing. We will review the rational design and ingenious integration of stretchable materials, structures, and signal transducers in different application scenarios to fabricate high-performance soft biosensors. Focus is also given to how these novel biosensors can be integrated into diverse important physiological environments and scenariosin situ, such as sweat analysis, wound monitoring, and neurochemical sensing. We also rethink and discuss the current limitations, challenges, and prospects of soft biosensors. This review holds significant importance for researchers and engineers, as it assists in comprehending the overarching trends and pivotal issues within the realm of designing and manufacturing soft electronics for biochemical sensing.  more » « less
Award ID(s):
2334134 2323917 2339495
PAR ID:
10537061
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
International Journal of Extreme Manufacturing
Volume:
6
Issue:
6
ISSN:
2631-8644
Format(s):
Medium: X Size: Article No. 062005
Size(s):
Article No. 062005
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Flexible and stretchable bioelectronics provides a biocompatible interface between electronics and biological systems and has received tremendous attention for in situ monitoring of various biological systems. Considerable progress in organic electronics has made organic semiconductors, as well as other organic electronic materials, ideal candidates for developing wearable, implantable, and biocompatible electronic circuits due to their potential mechanical compliance and biocompatibility. Organic electrochemical transistors (OECTs), as an emerging class of organic electronic building blocks, exhibit significant advantages in biological sensing due to the ionic nature at the basis of the switching behavior, low driving voltage (<1 V), and high transconductance (in millisiemens range). During the past few years, significant progress in constructing flexible/stretchable OECTs (FSOECTs) for both biochemical and bioelectrical sensors has been reported. In this regard, to summarize major research accomplishments in this emerging field, this review first discusses structure and critical features of FSOECTs, including working principles, materials, and architectural engineering. Next, a wide spectrum of relevant physiological sensing applications, where FSOECTs are the key components, are summarized. Last, major challenges and opportunities for further advancing FSOECT physiological sensors are discussed. 
    more » « less
  2. Abstract Precision healthcare relies upon ubiquitous biofeedback to optimize therapy individually for nuanced and dynamic needs. However, grand challenges reside in the lack of soft, highly personalizable monitors that are scalable in manufacturing and reversibly interchangeable upon the evolution of needs. Herein, a customizable soft wearable platform is presented that can seamlessly integrate diverse functional modules, including physical and biochemical sensors, stimulators, and energy storage devices, tailored to various health monitoring scenarios, while can self‐repair after certain mechanical damage. The platform supports versatile physiological sensing and therapeutic intervention due to its compatibility with wide‐ranging functional nanomaterials. A bilayer microporous foam embedded in the gel improves sweat management for comfortable and reliable on‐body biomarker monitoring. Furthermore, flexible self‐healing zinc‐air batteries using ion gel electrolytes provide opportunities for self‐powered, closed‐loop systems. On‐body demonstrations validate the platform's capability to monitor physiological and metabolic states under real‐world conditions. This work provides a scalable and adaptable materials‐based solution for real‐time personalized health monitoring, advancing wearable bioelectronics to meet evolving healthcare demands. 
    more » « less
  3. Abstract Stress is one of the main causes that increase the risk of serious health problems. Recent wearable devices have been used to monitor stress levels via electrodermal activities on the skin. Although many biosensors provide adequate sensing performance, they still rely on uncomfortable, partially flexible systems with rigid electronics. These devices are mounted on either fingers or palms, which hinders a continuous signal monitoring. A fully‐integrated, stretchable, wireless skin‐conformal bioelectronic (referred to as “SKINTRONICS”) is introduced here that integrates soft, multi‐layered, nanomembrane sensors and electronics for continuous and portable stress monitoring in daily life. The all‐in‐one SKINTRONICS is ultrathin, highly soft, and lightweight, which overall offers an ergonomic and conformal lamination on the skin. Stretchable nanomembrane electrodes and a digital temperature sensor enable highly sensitive monitoring of galvanic skin response (GSR) and temperature. A set of comprehensive signal processing, computational modeling, and experimental study provides key aspects of device design, fabrication, and optimal placing location. Simultaneous comparison with two commercial stress monitors captures the enhanced performance of SKINTRONICS in long‐term wearability, minimal noise, and skin compatibility. In vivo demonstration of continuous stress monitoring in daily life reveals the unique capability of the soft device as a real‐world applicable stress monitor. 
    more » « less
  4. Abstract Nanomaterial‐enabled flexible and stretchable electronics have seen tremendous progress in recent years, evolving from single sensors to integrated sensing systems. Compared with nanomaterial‐enabled sensors with a single function, integration of multiple sensors is conducive to comprehensive monitoring of personal health and environment, intelligent human–machine interfaces, and realistic imitation of human skin in robotics and prosthetics. Integration of sensors with other functional components promotes real‐world applications of the sensing systems. Here, an overview of the design and integration strategies and manufacturing techniques for such sensing systems is given. Then, representative nanomaterial‐enabled flexible and stretchable sensing systems are presented. Following that, representative applications in personal health, fitness tracking, electronic skins, artificial nervous systems, and human–machine interactions are provided. To conclude, perspectives on the challenges and opportunities in this burgeoning field are considered. 
    more » « less
  5. On‐skin electronics have drawn extensive attention as they revolutionize many aspects of healthcare, motion tracking, rehabilitation, robotics, human–machine interaction, among others. Flexible and stretchable strain sensors represent one of the most explored devices for on‐skin electronics. Many printing techniques have recently emerged showing great promises for manufacturing strain sensors. Herein, it is aimed to provide a timely survey of recent advancements in printed strain sensors for on‐skin electronics. This review starts with an overview of sensing mechanisms for printed strain sensors, followed by a review of various printing techniques employed in fabricating these sensors. The materials, structures, and printing processes of representative strain sensors are discussed in detail for each printing method. Finally, potential applications of printed flexible and stretchable strain sensors are presented focusing on three areas: healthcare, sports performance monitoring, and human–machine interfaces. The review concludes with a discussion of challenges and opportunities for future research. 
    more » « less