skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Room Temperature Synthesis of Lead-Free Sn/Ge-Based Perovskite Quantum Dots
Metal halide perovskites have received remarkable attention as photovoltaic (PV) devices. These have already achieved power conversion efficiency higher than 23% rivaling that of silicon-based PV. However, these outstanding efficiencies can only be acquired with lead-based perovskites and the devices are chemically unstable in air and moisture. Therefore, the key to the widespread deployment of perovskite-based solar cell will come down to address their "toxicity" and instability problems. We have taken the challenge to replace lead with other nontoxic or less toxic elements, e.g., Sn, and Ge. We have synthesized Cs(Sn,Ge)X 3 (X=I, Br, and Cl) quantum dots (QDs) using room temperature process. The XRD data showed that the synthesized QDs were yellow hexagonal phase, which was further confirmed by the hexagonal shape of the TEM images of the crystals.  more » « less
Award ID(s):
1751946
PAR ID:
10211087
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2019 IEEE 46th Photovoltaic Specialists Conference (PVSC)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Triple cation Cs/methylammonium (MA)/formamidinium (FA) and double halide Br/I lead perovskites improved the stability and efficiency of perovskite solar cells (PVSCs). However, their effects on alloyed Pb–Sn perovskites are unexplored. In this work, perovskite thin films with the composition Cs x (MA 0.17 FA 0.83 ) 1−x Pb 1−y Sn y (I 0.83 Br 0.17 ) 3 are synthesized utilizing a one-step solution process plus an anti-solvent wash technique and deployed in PVSCs with an inverted architecture. All films show a cubic crystal structure, demonstrating that compositional tuning of both the tolerance factor and crystallization rate allows for dense, single phase formation. The band gaps, affected by both lattice constriction and octahedral tilting, show opposite trends in Pb-rich or Sn-rich perovskites with the increase of Cs for fixed Sn compositions. The Cs 0.05 (MA 0.17 FA 0.83 ) 0.95 Pb 0.25 Sn 0.75 (I 0.83 Br 0.17 ) 3 PVSCs achieve a power conversion efficiency (PCE) of 11.05%, a record for any PVSC containing 75% Sn perovskites, and the Cs 0.10 (MA 0.17 FA 0.83 ) 0.90 Pb 0.75 Sn 0.25 (I 0.83 Br 0.17 ) 3 PVSCs reach a record PCE of 15.78%. Moreover, the triple cation and double halide alloyed Pb–Sn perovskites exhibit improved device stability under inert and ambient conditions. This study, which illustrates the impact of cation and halide tuning on alloyed Pb–Sn perovskites, can be used to further eliminate Pb and improve device performance of high Sn PVSCs and other optoelectronic devices. 
    more » « less
  2. Yb 3+ -Doped lead-halide perovskites (Yb 3+ :CsPb(Cl 1−x Br x ) 3 ) have emerged as unique materials combining strong, tunable broadband absorption with near-infrared photoluminescence quantum yields (PLQYs) approaching 200% at ambient temperature. These remarkable properties make Yb 3+ :CsPb(Cl 1−x Br x ) 3 an extremely promising candidate for spectral shaping in high-efficiency photovoltaic devices. Previous theoretical assessments of such “downconversion” devices have predicted single-junction efficiencies up to 40%, but have been highly idealized. Real materials like Yb 3+ :CsPb(Cl 1−x Br x ) 3 have practical limitations such as constrained band-gap and PL energies, non-directional emission, and an excitation-power-dependent PLQY. Hence, it is unclear whether Yb 3+ :CsPb(Cl 1−x Br x ) 3 , or any other non-ideal quantum-cutting material, can indeed boost the efficiencies of real high-performance PV. Here, we examine the thermodynamic, detailed-balance efficiency limit of Yb 3+ :CsPb(Cl 1−x Br x ) 3 on different existing PV under real-world conditions. Among these, we identify silicon heterojunction technology as very promising for achieving significant performance gains when paired with Yb 3+ :CsPb(Cl 1−x Br x ) 3 , and we predict power-conversion efficiencies of up to 32% for this combination. Surprisingly, PL saturation does not negate the improved device performance. Calculations accounting for actual hourly incident solar photon fluxes show that Yb 3+ :CsPb(Cl 1−x Br x ) 3 boosts power-conversion efficiencies at all times of day and year in two representative geographic locations. Predicted annual energy yields are comparable to those of tandem perovskite-on-silicon technologies, but without the need for current matching, tracking, or additional electrodes and inverters. In addition, we show that band-gap optimization in real quantum cutters is inherently a function of their PLQY and the ability to capture that PL. These results provide key design rules needed for development of high-efficiency quantum-cutting photovoltaic devices based on Yb 3+ :CsPb(Cl 1−x Br x ) 3 . 
    more » « less
  3. Organic–inorganic hybrid lead-based perovskites experience significant environmental instability under ambient moist air and are not environmentally benign due to the usage of toxic Pb. Here, we report a new approach to synthesize lead-free all inorganic perovskites (Cs 2 SnI x Cl 6−x ) using hydriodic acid (HI) demonstrating greatly enhanced environmental stability and tunable optical properties by controlling the I − /Cl − ratios. Single phase perovskites can be achieved with a low iodine or chlorine content, and a phase separation occurs in the binary system with closer iodine and chlorine dopings. UV-vis diffuse reflectance and photoluminescence measurements reveal tunable band gaps of Cs 2 SnI x Cl 6−x perovskites from the UV to the infrared region. The mixed halide perovskite with a lower chloride content shows significantly higher photoluminescence intensity. The thermal stability of mixed halide all-inorganic perovskites is continuously improved as the Cl content increases. The synthesis of Sn-based perovskites with tunable optical properties and environmental stability represents one step further toward the realization of the stable lead-free all inorganic perovskites. 
    more » « less
  4. Abstract Germanium-based oxides such as rutile GeO 2 are garnering attention owing to their wide band gaps and the prospects of ambipolar doping for application in high-power devices. Here, we present the use of germanium tetraisopropoxide (GTIP), a metal-organic chemical precursor, as a source of germanium for the demonstration of hybrid molecular beam epitaxy for germanium-containing compounds. We use Sn 1- x Ge x O 2 and SrSn 1- x Ge x O 3 as model systems to demonstrate our synthesis method. A combination of high-resolution X-ray diffraction, scanning transmission electron microscopy, and X-ray photoelectron spectroscopy confirms the successful growth of epitaxial rutile Sn 1- x Ge x O 2 on TiO 2 (001) substrates up to x  = 0.54 and coherent perovskite SrSn 1- x Ge x O 3 on GdScO 3 (110) substrates up to x  = 0.16. Characterization and first-principles calculations corroborate that germanium occupies the tin site, as opposed to the strontium site. These findings confirm the viability of the GTIP precursor for the growth of germanium-containing oxides by hybrid molecular beam epitaxy, thus providing a promising route to high-quality perovskite germanate films. 
    more » « less
  5. Tensile-strained pseudomorphic Ge 1–x–y Sn x C y was grown on GaAs substrates by molecular beam epitaxy using carbon tetrabromide (CBr 4 ) at low temperatures (171–258 °C). High resolution x-ray diffraction reveals good crystallinity in all samples. Atomic force microscopy showed atomically smooth surfaces with a maximum roughness of 1.9 nm. The presence of the 530.5 cm −1 local vibrational mode of carbon in the Raman spectrum verifies substitutional C incorporation in Ge 1–x–y Sn x C y samples. X-ray photoelectron spectroscopy confirms carbon bonding with Sn and Ge without evidence of sp 2 or sp 3 carbon formation. The commonly observed Raman features corresponding to alternative carbon phases were not detected. Furthermore, no Sn droplets were visible in scanning electron microscopy, illustrating the synergy in C and Sn incorporation and the potential of Ge 1–x–y Sn x C y active regions for silicon-based lasers. 
    more » « less