This article presents a novel optimization method that handles collision constraints with complex, non-convex 3D geometries. The optimization problem is cast as a semi-infinite program in which each collision constraint is implicitly treated as an infinite number of numeric constraints. The approach progressively generates some of these constraints for inclusion in a finite nonlinear program. Constraint generation uses an oracle to detect points of deepest penetration, and this oracle is implemented efficiently via signed distance field (SDF) versus point cloud collision detection. This approach is applied to pose optimization and trajectory optimization for both free-flying rigid bodies and articulated robots. Experiments demonstrate performance improvements compared with optimizers that handle only convex polyhedra, and demonstrate efficient collision avoidance between non-convex CAD models and point clouds in a variety of pose and trajectory optimization settings. 
                        more » 
                        « less   
                    
                            
                            Distributed Online Convex Programming for Collision Avoidance in Multi-agent Autonomous Vehicle Systems
                        
                    
    
            We frame the collision avoidance problem of multi-agent autonomous vehicle systems into an online convex optimization problem of minimizing certain aggregate cost over the time horizon. We then propose a distributed real-time collision avoidance algorithm based on the online gradient algorithm for solving the resulting online convex optimization problem. We characterize the performance of the algorithm with respect to a static offline optimization, and show that, by choosing proper stepsizes, the upper bound on the performance gap scales sublinearly in time. The numerical experiment shows that the proposed algorithm can achieve better collision avoidance performance than the existing Optimal Reciprocal Collision Avoidance (ORCA) algorithm, due to less aggressive velocity updates that can better prevent the collision in the long run. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1646556
- PAR ID:
- 10211129
- Date Published:
- Journal Name:
- American Control Conference (ACC)
- Page Range / eLocation ID:
- 2771 to 2776
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Urban Air Mobility, the scenario where hundreds of manned and Unmanned Aircraft Systems (UASs) carry out a wide variety of missions (e.g., moving humans and goods within the city), is gaining acceptance as a transportation solution of the future. One of the key requirements for this to happen is safely managing the air traffic in these urban airspaces. Due to the expected density of the airspace, this requires fast autonomous solutions that can be deployed online. We propose Learning-‘N-Flying (LNF), a multi-UAS Collision Avoidance (CA) framework. It is decentralized, works on the fly, and allows autonomous Unmanned Aircraft System (UAS)s managed by different operators to safely carry out complex missions, represented using Signal Temporal Logic, in a shared airspace. We initially formulate the problem of predictive collision avoidance for two UASs as a mixed-integer linear program, and show that it is intractable to solve online. Instead, we first develop Learning-to-Fly (L2F) by combining (1) learning-based decision-making and (2) decentralized convex optimization-based control. LNF extends L2F to cases where there are more than two UASs on a collision path. Through extensive simulations, we show that our method can run online (computation time in the order of milliseconds) and under certain assumptions has failure rates of less than 1% in the worst case, improving to near 0% in more relaxed operations. We show the applicability of our scheme to a wide variety of settings through multiple case studies.more » « less
- 
            Abstract Trajectory planning for multiple robots in shared environments is a challenging problem especially when there is limited communication available or no central entity. In this article, we present Real-time planning using Linear Spatial Separations, or RLSS: a real-time decentralized trajectory planning algorithm for cooperative multi-robot teams in static environments. The algorithm requires relatively few robot capabilities, namely sensing the positions of robots and obstacles without higher-order derivatives and the ability of distinguishing robots from obstacles. There is no communication requirement and the robots’ dynamic limits are taken into account. RLSS generates and solves convex quadratic optimization problems that are kinematically feasible and guarantees collision avoidance if the resulting problems are feasible. We demonstrate the algorithm’s performance in real-time in simulations and on physical robots. We compare RLSS to two state-of-the-art planners and show empirically that RLSS does avoid deadlocks and collisions in forest-like and maze-like environments, significantly improving prior work, which result in collisions and deadlocks in such environments.more » « less
- 
            Considering the growing demand of real-time motion planning in robot applications, this paper proposes a fast robot motion planner (FRMP) to plan collision-free and time-optimal trajectories, which applies the convex feasible set algorithm (CFS) to solve both the trajectory planning problem and the temporal optimization problem. The performance of CFS in trajectory planning is compared to the sequential quadratic programming (SQP) in simulation, which shows a significant decrease in iteration numbers and computation time to converge a solution. The effectiveness of temporal optimization is shown on the operational time reduction in the experiment on FANUC LR Mate 200iD/7L.more » « less
- 
            Robust trajectory execution is an extension of cooperative collision avoidance that takes pre-planned trajectories directly into account. We propose an algorithm for robust trajectory execution that compensates for a variety of dynamic changes, including newly appearing obstacles, robots breaking down, imperfect motion execution, and external disturbances. Robots do not communicate with each other and only sense other robots’ positions and the obstacles around them. At the high-level we use a hybrid planning strategy employing both discrete planning and trajectory optimization with a dynamic receding horizon approach. The discrete planner helps to avoid local minima, adjusts the planning horizon, and provides good initial guesses for the optimization stage. Trajectory optimization uses a quadratic programming formulation, where all safety-critical parts are formulated as hard constraints. At the low-level, we use buffered Voronoi cells as a multi-robot collision avoidance strategy. Compared to ORCA, our approach supports higher-order dynamic limits and avoids deadlocks better. We demonstrate our approach in simulation and on physical robots, showing that it can operate in real time.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    