skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Data Compression Approach for Long-Term Monitoring of Pavement Structures
Pavement structures are designed to withstand continuous damage during their design life. Damage starts as soon as the pavement is open to traffic and increases with time. If maintenance activities are not considered in the initial design or considered but not applied during the service life, damage will grow to a point where rehabilitation may be the only and most expensive option left. In order to monitor the evolution of damage and its severity in pavement structures, a novel data compression approach based on cumulative measurements from a piezoelectric sensor is presented in this paper. Specifically, the piezoelectric sensor uses a thin film of polyvinylidene fluoride to sense the energy produced by the micro deformation generated due to the application of traffic loads. Epoxy solution has been used to encapsulate the membrane providing hardness and flexibility to withstand the high-loads and the high-temperatures during construction of the asphalt layer. The piezoelectric sensors have been exposed to three months of loading (approximately 1.0 million loads of 65 kN) at the French Institute of Science and Technology for Transport, Development and Networks (IFSTTAR) fatigue carrousel. Notably, the sensors survived the construction and testing. Reference measurements were made with a commercial conventional strain gauge specifically designed for measurements in hot mix asphalt layers. Results from the carrousel successfully demonstrate that the novel approach can be considered as a good indicator of damage progression, thus alleviating the need to measure strains in pavement for the purpose of damage tracking.  more » « less
Award ID(s):
1645783
PAR ID:
10211146
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Infrastructures
Volume:
5
Issue:
1
ISSN:
2412-3811
Page Range / eLocation ID:
1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cracked and deteriorated asphalt are common problems on our roads, leading to safety concerns and requiring significant resources for rehabilitation and reconstruction. This study investigates bio-fog seals, a promising eco-friendly solution utilizing bio-based rejuvenators. These treatments penetrate aged asphalt, restoring its flexibility and resistance to cracking. We assessed the effectiveness of two bio-fog seal formulations—one containing sub-epoxidized soybean oil (SESO) and the other combining SESO with a biopolymer (BioMag). Applied to real pavement sections, the research evaluated how these bio-seals impacted key performance factors, such as stiffness, permeability, and drying time, and safety factors, including skid resistance and pavement marking visibility. The results indicate the bio-seals did not compromise skid resistance and the reflectivity of the markings, eliminating the need for repainting stripes. Additionally, they successfully reduced pavement stiffness, making the asphalt more flexible and crack-resistant. Remarkably, with rapid setting times, under 30 min, these treatments minimize traffic disruption and do not require a blotter material. Overall, this research demonstrates the potential of bio-fog seals as a sustainable solution for extending pavement lifespan and lowering long-term maintenance costs. 
    more » « less
  2. Weight data of vehicles play an important role in traffic planning, weight enforcement, and pavement condition assessment. In this paper, a weigh-in-motion (WIM) system that functions at both low-speeds and high-speeds in flexible pavements is developed based on in-pavement, three-dimensional glass-fiber-reinforced, polymer-packaged fiber Bragg grating sensors (3D GFRP-FBG). Vehicles passing over the pavement produce strains that the system monitors by measuring the center wavelength changes of the embedded 3D GFRP-FBG sensors. The FBG sensor can estimate the weight of vehicles because of the direct relationship between the loading on the pavement and the strain inside the pavement. A sensitivity study shows that the developed sensor is very sensitive to sensor installation depth, pavement property, and load location. Testing in the field validated that the longitudinal component of the sensor if not corrected by location has a measurement accuracy of 86.3% and 89.5% at 5 mph and 45 mph vehicle speed, respectively. However, the system also has the capability to estimate the location of the loading position, which can enhance the system accuracy to more than 94.5%. 
    more » « less
  3. null (Ed.)
    Structural health monitoring (SHM) activities are essential for achieving a realistic characterisation of bridge structural performance levels throughout the service life. These activities can help detect structural damage before the potential occurrence of component- or system-level structural failures. In addition to their application at discrete times, SHM systems can also be installed to provide long-term accurate and reliable data continuously throughout the entire service life of a bridge. Owing to their superior accuracy and long-term durability compared to traditional strain gages, fiber optic sensors are ideal in extracting accurate real-time strain and temperature data of bridge components. This paper presents a statistical damage detection and localisation approach to evaluate the performance of prestressed concrete bridge girders using fiber Bragg grating sensors. The presented approach employs Artificial Neural Networks to establish a relationship between the strain profiles recorded at different sensor locations across the investigated girder. The approach is capable of detecting and localising the presence of damage at the sensor location without requiring detailed loading information; accordingly, it can be suitable for long-term monitoring activities under normal traffic loads. Experimental laboratory data obtained from the structural testing of a large-scale prestressed concrete bridge girder is used to illustrate the approach. 
    more » « less
  4. The structural capacity of pavement foundation is altered by moisture conditions. Reliable moisture monitoring of geomaterials throughout pavement service life is critical for asset management by transportation agencies. Improved moisture sensing enables transportation officials and practitioners to better understand performance of complex recycled materials under frequent extreme rain events. Although moisture sensing for geomaterials has improved significantly, there are still challenges when using sensors in recycled materials that may contain unhydrated cement, aged asphalt, or both. Challenges include the development of calibration functions that account for the presence of recycled materials and robust installation procedures, as technology was developed mostly for agricultural practices. In this study, a series of experiments were conducted to suggest improvements for installation techniques and data interpretation of soil moisture and water potential sensors. Suggested installation guidelines minimize wash-out and erosion potential at the soil–sensor interface. Experimental results indicate a strong bilinear relation between dielectric of recycled materials and water content, with a region of relatively small change governed by dielectric permittivity of air and a region of rapid change controlled by dielectric permittivity of water. Moreover, it was found that dielectric permittivity is not significantly affected by aggregate internal structure as dielectric for a specific moisture content for different compaction degrees is relatively similar. Furthermore, soil water characteristic curves obtained using the water potential sensor and improved installation technique compare reasonably well with laboratory results obtained with traditional equipment. Reliability of both moisture and water potential sensors was improved with the suggested guidelines. 
    more » « less
  5. null (Ed.)
    Structural health monitoring of fiber reinforced composites is an extensive field of research that aims to reduce maintenance costs through in-situ damage detection. However, the need for externally bonded sensor systems and complicated fabrication processes limit the widespread application of most current structural health monitoring techniques. This work introduces a novel multifunctional fiber reinforced composite that relies on a ferroelectric prepreg fabricated using dehydrofluorinated (DHF) polyvinylidene fluoride (PVDF), which exhibits a thermally stable piezoelectric response. The self-sensing material presented in this work requires minimal external components, as the piezoelectric sensing mechanism is fully contained within the composite. This is accomplished by fabricating a ferroelectric prepreg consisting of DHF PVDF infused woven fiberglass, which is sandwiched between woven carbon fabric layers that act as electrodes, thus forming a piezoelectric sensor fabricated with entirely structural composite materials. Notably, the sensing material is a fully distributed prepreg rather than discretely embedded sensors which enables simplified monitoring of complex structures. As the composite experiences damage under flexural and tensile loading, the internal change in strain results in a charge separation that is detectable as a voltage emission across the sample electrodes. The self-sensing capabilities of this material are explored using traditional mechanical testing techniques, showing comparable performance to common damage detection methods, all while eliminating the need for external bonding of sensors to the structure. 
    more » « less