skip to main content

Title: Student inquiry in interesting lessons
What impact, if any, do interesting lessons have on the types of questions students ask? To explore this question, we used lesson observations of six teachers from three high schools in the Northeast who were part of a larger study. Lessons come from a range of courses, spanning Algebra through Calculus. After each lesson, students reported interest via lesson experience surveys (Author, 2019). These interest measures were then used to identify each teachers’ highest and lowest interest lessons. The two lessons per teacher allows us to compare across the same set of students per teacher. We compiled 145 student questions and identified whether questions were asked within a group work setting or part of a whole class discussion. Two coders coded 10% of data to improve the rubric for type of students’ questions (what, why, how, and if) and perceived intent (factual, procedural, reasoning, and exploratory). Factual questions asked for definitions or explicit answers. Procedural questions were raised when students looked for algorithms or a solving process. Reasoning questions asked about why procedures worked, or facts were true. Exploratory questions expanded beyond the topic of focus, such as asking about changing the parameters to make sense of a problem. The more » remaining 90% of data were coded independently to determine interrater reliability (see Landis & Koch, 1977). A Cohen’s Kappa statistic (K=0.87, p<0.001) indicates excellent reliability. Furthermore, both coders reconciled codes before continuing with data analysis. Initial results showed differences between high- and low-interest lessons. Although students raised fewer mathematical questions in high-interest lessons (59) when compared with low-interest lessons (86), high-interest lessons contained more “exploratory” questions (10 versus 6). A chi-square test of independence shows a significant difference, χ2 (3, N = 145) = 12.99, p = .005 for types of students’ questions asked in high- and low-interest lessons. The high-interest lessons had more student questions arise during whole class discussions, whereas low-interest lessons had more student questions during group work. By partitioning each lesson into acts at points where the mathematical content shifted, we were able to examine through how many acts questions remained open. The average number of acts the students’ questions remained unanswered for high-interest lessons (2.66) was higher than that of low-interest lessons (1.68). Paired samples t-tests suggest that this difference is significant t(5)=2.58, p = 0.049. Therefore, student interest in the lesson did appear to impact the type of questions students ask. One possible reason for the differences in student questions is the nature of the lessons students found interesting, which may allow for student freedom to wonder and chase their mathematical ideas. There may be more overall student questions in low-interest lessons because of confusion, but more research is needed to unpack the reasoning behind student questions. « less
Authors:
; ;
Editors:
Sacristán, A. I.; Cortés-Zavala, J. C.; Ruiz-Arias, P. M.
Award ID(s):
1652513
Publication Date:
NSF-PAR ID:
10211151
Journal Name:
Mathematics Education Across Cultures: Proceedings of the 42nd Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education
Sponsoring Org:
National Science Foundation
More Like this
  1. Olanoff, D. ; Johnson, K. ; & Spitzer, S. (Ed.)
    How does the design of lessons impact the types of questions teachers and students ask during enacted high school mathematics lessons? In this study, we present data that suggests that lessons designed with the mathematical story framework to elicit a specific aesthetic response (“MCLEs”) having a positive influence on the types of teacher and student questions they ask during the lesson. Our findings suggest that when teachers plan and enact lessons with the mathematical story framework, teachers and students are more likely to ask questions that explore mathematical relationships and focus on meaning making. In addition, teachers are less likely to ask short recall or procedural questions in MCLEs. These findings point to the role of lesson design in the quality of questions asked by teachers and students.
  2. Sacristán, A. I. ; Cortés-Zavala, J. C. ; Ruiz-Arias, P. M. (Ed.)
    How can we design mathematical lessons that spark student interest? To answer this, we analyzed teacher-designed and enacted lessons that students described as interesting for how the content unfolded. When compared to those the same students describe as uninteresting, multiple distinguishing characteristics are evident, such as the presence of misdirection, mathematical questions that remain unanswered for extended time, and a greater number of questions that are unanswered at each point of the lesson. Low-interest lessons did not contain many special narrative features and mostly had questions that were answered immediately. Our findings offer guidance for the design of lessons that can shift student mathematical dispositions.
  3. As computer-focused policies and trends become more popular in schools, more students access math curriculum online. While computer-based programs may be responsive to some student input, their algorithmic basis can make it more difficult for them to be prepared for divergent student thinking, especially in comparison to a teacher. Consider programs that assess student work by judging how well it matches pre-set answers. Unless designed and enacted in classrooms with care, computer-based curriculum materials might encourage students to think about mathematics in pre-determined ways. How do students approach the process of mathematics while using online materials, especially in terms of engaging in original thought? Drawing on Pickering’s (1995) dance of agency and Sinclair’s (2001) conception of students as path-finders or track-takers, I define two modes of mathematical behavior: trail-taking and bushwhacking. While trail-taking, students follow an established approach, often relying on Pickering’s (1995) disciplinary agency, wherein the mathematics “leads [them] through a series of manipulations” (p. 115). The series of manipulations can be seen as a trail that a student may choose to follow. Bushwhacking, on the other hand, refers to actions a student takes of their own invention. It is possible that, unknown to the student, these actions havemore »been taken before by others. In bushwhacking, the student possesses agency, which Pickering (1995) describes as active (rather than passive) and as hallmarked by “choice and discretion” (p. 117). In this study, students worked in several dynamic geometric environments (DGEs) during a geometry lesson about the midline theorem. The lesson was originally recorded as part of a larger study designing mathematically captivating lessons. Students accessed both problems and online addresses for corresponding DGEs via a printed packet. Students interacted with the DGEs on individual laptops, but were seated in groups of three or four. Passages of group conversations in which students transitioned between trail-taking and bushwhacking were selected for closer analysis, which involved identifying evidence of each mode and highlighting the curricular or social forces that may have contributed to shifts between modes. Of particular interest were episodes in which students asked one another to share results, which led to students reconsidering previously set approaches, and episodes in which students interacted with DGEs containing a relatively high proportion of drag-able components, which corresponded to some students working in bushwhacking mode, spontaneously suggesting and revising approaches for manipulating the DGE (e.g., “unless you make this parallel to the bottom, but I don’t think you... yes you can.”). Both types of episodes were found in multiple groups’ conversations. Further analysis of student interactions with tasks, especially with varying levels of student control and sharing, could serve to inform future computer-based task design aimed to encourage students to productively engage in bushwhacking while problem-solving.« less
  4. Effects of High Impact Educational Practices on Engineering and Computer Science Student Participation, Persistence, and Success at Land Grant Universities: Award# RIEF-1927218 – Year 2 Abstract Funded by the National Science Foundation (NSF), this project aims to investigate and identify associations (if any) that exist between student participation in High Impact Educational Practices (HIP) and their educational outcomes in undergraduate engineering and computer science (E/CS) programs. To understand the effects of HIP participation among E/CS students from groups historically underrepresented and underserved in E/CS, this study takes place within the rural, public university context at two western land grant institutions (one of which is an Hispanic-serving institution). Conceptualizing diversity broadly, this study considers gender, race and ethnicity, and first-generation, transfer, and nontraditional student status to be facets of identity that contribute to the diversity of academic programs and the technical workforce. This sequential, explanatory, mixed-methods study is guided by the following research questions: 1. To what extent do E/CS students participate in HIP? 2. What relationships (if any) exist between E/CS student participation in HIP and their educational outcomes (i.e., persistence in major, academic performance, and graduation)? 3. How do contextual factors (e.g., institutional, programmatic, personal, social, financial, etc.) affectmore »E/CS student awareness of, interest in, and participation in HIP? During Project Year 1, a survey driven quantitative study was conducted. A survey informed by results of the National Survey of Student Engagement (NSSE) from each institution was developed and deployed. Survey respondents (N = 531) were students enrolled in undergraduate E/CS programs at either institution. Frequency distribution analyses were conducted to assess the respondents’ level of participation in extracurricular HIPs (i.e., global learning and study aboard, internships, learning communities, service and community-based learning, and undergraduate research) that have been shown in the literature to positively impact undergraduate student success. Further statistical analysis was conducted to understand the effects of HIP participation, coursework enjoyability, and confidence at completing a degree on the academic success of underrepresented and nontraditional E/CS students. Exploratory factor analysis was used to derive an "academic success" variable from five items that sought to measure how students persevere to attain academic goals. Results showed that a linear relationship in the target population exists and that the resultant multiple regression model is a good fit for the data. During the Project Year 2, survey results were used to develop focus group interview protocols and guide the purposive selection of focus group participants. Focus group interviews were conducted with a total of 27 undergraduates (12 males, 15 females, 16 engineering students, 11 computer science students) across both institutions via video conferencing (i.e., ZOOM) during the spring and fall 2021 semesters. Currently, verified focus group transcripts are being systematically analyzed and coded by a team of four trained coders to identify themes and answer the research questions. This paper will provide an overview of the preliminary themes so far identified. Future project activities during Project Year 3 will focus on refining themes identified during the focus group transcript analysis. Survey and focus group data will then be combined to develop deeper understandings of why and how E/CS students participate in the HIP at their university, taking into account the institutional and programmatic contexts at each institution. Ultimately, the project will develop and disseminate recommendations for improving diverse E/CS student awareness of, interest in, and participation in HIP, at similar land grant institutions nationally.« less
  5. Background/Context:

    Schools are increasingly using scripted curricula that limit teacher autonomy. These limitations are exacerbated when scripted curricula are enacted in fully standardized, asynchronous online course environments with no mechanisms for student–teacher communication.

    Purpose:

    This study extends understanding of how teacher discretion, identity, and the relationship between those two components shape students’ educational experiences online.

    Research Design:

    Within a sequential mixed method design, we identified spaces for teacher discretion using critical discourse analysis. By coding lesson transcripts, we developed a typology of common strategies: friendly, directive, personalized, and procedural. We used the resulting typology to run statistical models examining associations among teacher identity, discretionary acts, and student achievement. Lastly, we turned back to the qualitative data to confirm findings, test hypotheses, and provide nuance.

    Findings:

    Teachers presenting as Black were significantly more likely to use a procedural approach and significantly less likely to use friendly strategies. Students scored higher on their end-of-lesson quiz when their teacher used personalized strategies, such as sharing relevant personal experiences, and scored lower when teachers used friendly or directive strategies.

    Conclusions:

    Findings have implications for understanding and enacting equitable educational practices in asynchronous, scripted online environments. The isolation of discretionary acts feasible within the virtual learning environment studied contributes nuancemore »to knowledge of the mechanisms through which teacher discretion might result in more favorable learning outcomes for students belonging to minoritized groups.

    « less