skip to main content


Title: Impact of Lesson Design on Teacher and Student Mathematical Questions
How does the design of lessons impact the types of questions teachers and students ask during enacted high school mathematics lessons? In this study, we present data that suggests that lessons designed with the mathematical story framework to elicit a specific aesthetic response (“MCLEs”) having a positive influence on the types of teacher and student questions they ask during the lesson. Our findings suggest that when teachers plan and enact lessons with the mathematical story framework, teachers and students are more likely to ask questions that explore mathematical relationships and focus on meaning making. In addition, teachers are less likely to ask short recall or procedural questions in MCLEs. These findings point to the role of lesson design in the quality of questions asked by teachers and students.  more » « less
Award ID(s):
1652513
NSF-PAR ID:
10314175
Author(s) / Creator(s):
; ; ;
Editor(s):
Olanoff, D.; Johnson, K.; & Spitzer, S.
Date Published:
Journal Name:
Proceedings of the Psychology of Mathematics Education - North American Chapter
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sacristán, A. I. ; Cortés-Zavala, J. C. ; Ruiz-Arias, P. M. (Ed.)
    What impact, if any, do interesting lessons have on the types of questions students ask? To explore this question, we used lesson observations of six teachers from three high schools in the Northeast who were part of a larger study. Lessons come from a range of courses, spanning Algebra through Calculus. After each lesson, students reported interest via lesson experience surveys (Author, 2019). These interest measures were then used to identify each teachers’ highest and lowest interest lessons. The two lessons per teacher allows us to compare across the same set of students per teacher. We compiled 145 student questions and identified whether questions were asked within a group work setting or part of a whole class discussion. Two coders coded 10% of data to improve the rubric for type of students’ questions (what, why, how, and if) and perceived intent (factual, procedural, reasoning, and exploratory). Factual questions asked for definitions or explicit answers. Procedural questions were raised when students looked for algorithms or a solving process. Reasoning questions asked about why procedures worked, or facts were true. Exploratory questions expanded beyond the topic of focus, such as asking about changing the parameters to make sense of a problem. The remaining 90% of data were coded independently to determine interrater reliability (see Landis & Koch, 1977). A Cohen’s Kappa statistic (K=0.87, p<0.001) indicates excellent reliability. Furthermore, both coders reconciled codes before continuing with data analysis. Initial results showed differences between high- and low-interest lessons. Although students raised fewer mathematical questions in high-interest lessons (59) when compared with low-interest lessons (86), high-interest lessons contained more “exploratory” questions (10 versus 6). A chi-square test of independence shows a significant difference, χ2 (3, N = 145) = 12.99, p = .005 for types of students’ questions asked in high- and low-interest lessons. The high-interest lessons had more student questions arise during whole class discussions, whereas low-interest lessons had more student questions during group work. By partitioning each lesson into acts at points where the mathematical content shifted, we were able to examine through how many acts questions remained open. The average number of acts the students’ questions remained unanswered for high-interest lessons (2.66) was higher than that of low-interest lessons (1.68). Paired samples t-tests suggest that this difference is significant t(5)=2.58, p = 0.049. Therefore, student interest in the lesson did appear to impact the type of questions students ask. One possible reason for the differences in student questions is the nature of the lessons students found interesting, which may allow for student freedom to wonder and chase their mathematical ideas. There may be more overall student questions in low-interest lessons because of confusion, but more research is needed to unpack the reasoning behind student questions. 
    more » « less
  2. Why do some mathematics lessons captivate high school students and others not? This study explores this question by comparing how the content unfolds in the lessons that students rated highest with respect to their aesthetic affordances (e.g., using terms like “intriguing,” “surprising”) with those the same students rated lowest with respect to their aesthetic affordances (e.g., “just ok,” “dull”). Using a framework that interprets the unfolding content across a lesson as a mathematical story, we examine how some lessons can provoke curiosity or enable surprise. We identify eight characteristics that distinguish captivating lessons and show how some, such as the average number of questions under consideration at any point in the lesson, are strongly related to student aesthetic experiences. In addition, the lessons that students described as more interesting included more instances of misdirection, such as when students’ false assumptions provide opportunities for surprising results. These findings point to the characteristics of future lesson designs that could enable more students to experience curiosity and wonder in secondary mathematics classrooms. 
    more » « less
  3. Secondary students do not often have positive experiences with mathematics. To address this challenge, this paper shares findings of a design-based research project in which a mathematical story framework was used to design mathematically captivating lesson experiences (“MCLEs”). We provide evidence that designing lessons as mathematical stories shows promise. That is, students reported improved experiences in MCLEs when compared to randomly-selected lessons. The MCLEs also impacted the students’ descriptions of their experience. 
    more » « less
  4. This study focuses on a lesson study adaptation for bridging prospective teachers’ experiencesin a methods course and their field experiences in a teacher education program in Puerto Rico. We ask, what opportunities for teacher learning emerge during discussions in lesson study? Two lesson study teams of secondary mathematics prospective teachers, each led by an experienced mentor, planned technology-based lessons. Using the theoretical framework for lesson study by Lewis and colleagues, we analyzed video recordings of the teams’ discussions. The results show learning opportunities in the three dimensions of the framework: teachers’ knowledge and beliefs, the creation of a professional community, and the development of teaching–learning artifacts. The mentors leveraged prospective teachers’ knowledge, built on topics discussed in the methods course, and created a professional learning community. Three resources introduced in the methods course supported the creation of a hybrid space connecting academic and practitioner knowledge: shared language about teaching moves for using technology in math instruction, the mathematical proficiency framework, and a lesson plan template. The mentors drew upon their subject matter and pedagogical knowledge during their facilitation of lesson study. The intervention exemplifies a lesson study adaptation that is feasible in the context of a teacher education program. 
    more » « less
  5. In recent years, Wyoming has developed Computer Science (CS) standards for adoption and use within K-12 classrooms. These standards, adopted in January of 2022, go into effect for the 2022-2023 school year. The University of Wyoming has offered two different computer science week-long professional developments for teachers. Many K-12 teachers do not have a CS background, so developing CS lessons plans can be a challenge in these PDs.This research study is centered around three central questions: 1) To what extent did K-12 teachers integrate computing topics into their PD created lesson plans; 2) How do the teacher perceptions from the two CS PDs compare to each other; and 3) How was the CS PD translated to classroom activity? The first PD opportunity (n=14), was designed to give hands-on learning with CS topics focused on cybersecurity. The second PD opportunity (n=28), focused on integrating CS into existing curricula. At the end of each of these PDs, teacher K-12 teachers incorporated CS topics into their selected existing lesson plan(s). Additionally, a support network was implemented to support excellence in CS education throughout the state. This research study team evaluated the lesson plans developed during each PD event, by using a rubric on each lesson plan. Researchers collected exit surveys from the teachers. Implementation metrics were also gathered, including, how long each lesson lasted, how many students were involved in the implementation, what grades the student belonged to, the basic demographics of the students, the type of course the lesson plan was housed in, if the K-12 teacher reached their intended purpose, what evidence the K-12 teacher had of the success of their lesson plan, data summaries based on supplied evidence, how the K-12 teachers would change the lesson, the challenges and successes they experienced, and samples of student work. Quantitative analysis was basic descriptive statistics. Findings, based on evaluation of 40+ lessons, taught to over 1500 K-12 students, indicate that when assessed on a three point rubric of struggling, emerging, or excellent - certain components (e.g., organization, objectives, integration, activities & assessment, questions, and catch) of K-12 teacher created lessons plans varied drastically. In particular, lesson plan organization, integration, and questions each had a significant number of submissions which were evaluated as "struggling" [45%, 46%, 41%] through interesting integration, objectives, activities & assessment, and catch all saw submissions which were evaluated as "excellent" [43%, 48%, 43%, 48%]. The relationship between existing K-12 policies and expectations surfaces within these results and in combination with other findings leads to implications for the translation of current research practices into pre-collegiate PDs. 
    more » « less