n this paper, we focus on the problem of shrinking-horizon Model Predictive Control (MPC) in uncertain dynamic environments. We consider controlling a deterministic autonomous system that interacts with uncontrollable stochastic agents during its mission. Employing tools from conformal prediction, existing works derive high-confidence prediction regions for the unknown agent trajectories, and integrate these regions in the design of suitable safety constraints for MPC. Despite guaranteeing probabilistic safety of the closed-loop trajectories, these constraints do not ensure feasibility of the respective MPC schemes for the entire duration of the mission. We propose a shrinking-horizon MPC that guarantees recursive feasibility via a gradual relaxation of the safety constraints as new prediction regions become available online. This relaxation enforces the safety constraints to hold over the least restrictive prediction region from the set of all available prediction regions. In a comparative case study with the state of the art, we empirically show that our approach results in tighter prediction regions and verify recursive feasibility of our MPC scheme.
more »
« less
Uncertainty-Aware Constraint Learning for Adaptive Safe Motion Planning from Demonstrations
We present a method for learning to satisfy uncertain constraints fromdemonstrations. Our method uses robust optimization to obtain a belief over thepotentially infinite set of possible constraints consistent with the demonstrations,and then uses this belief to plan trajectories that trade off performance with sat-isfying the possible constraints. We use these trajectories in a closed-loop policythat executes and replans using belief updates, which incorporate data gatheredduring execution. We derive guarantees on the accuracy of our constraint beliefand probabilistic guarantees on plan safety. We present results on a 7-DOF armand 12D quadrotor, showing our method can learn to satisfy high-dimensional (upto 30D) uncertain constraints, and outperforms baselines in safety and efficiency.
more »
« less
- Award ID(s):
- 1553873
- PAR ID:
- 10211345
- Date Published:
- Journal Name:
- Conference on Robot Learning
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present a scalable algorithm for learning parametric constraints in high dimensions from safe expert demonstrations. To reduce the ill-posedness of the constraint recovery problem, our method uses hit-and-run sampling to generate lower cost, and thus unsafe, trajectories. Both safe and unsafe trajectories are used to obtain a representation of the unsafe set that is compatible with the data by solving an integer program in that representation’s parameter space. Our method can either leverage a known parameterization or incrementally grow a parameterization while remaining consistent with the data, and we provide theoretical guarantees on the conservativeness of the recovered unsafe set. We evaluate our method on high-dimensional constraints for high-dimensional systems by learning constraints for 7-DOF arm, quadrotor, and planar pushing examples, and show that our method outperforms baseline approaches.more » « less
-
We present a multi-modal trajectory generation and selection algorithm for real-world mapless outdoor navigation in human-centered environments. Such environments contain rich features like crosswalks, grass, and curbs, which are easily interpretable by humans, but not by mobile robots. We aim to compute suitable trajectories that (1) satisfy the environment-specific traversability constraints and (2) generate human-like paths while navigating on crosswalks, sidewalks, etc. Our formulation uses a Conditional Variational Autoencoder (CVAE) generative model enhanced with traversability constraints to generate multiple candidate trajectories for global navigation. We develop a visual prompting approach and leverage the Visual Language Model's (VLM) zero-shot ability of semantic understanding and logical reasoning to choose the best trajectory given the contextual information about the task. We evaluate our method in various outdoor scenes with wheeled robots and compare the performance with other global navigation algorithms. In practice, we observe an average improvement of 20.81% in satisfying traversability constraints and 28.51% in terms of human-like navigation in four different outdoor navigation scenarios.more » « less
-
Planning safe trajectories for nonlinear dynamical systems subject to model uncertainty and disturbances is challenging. In this work, we present a novel approach to tackle chance-constrained trajectory planning problems with nonconvex constraints, whereby obstacle avoidance chance constraints are reformulated using the signed distance function. We propose a novel sequential convex programming algorithm and prove that under a discrete time problem formulation, it is guaranteed to converge to a solution satisfying first-order optimality conditions. We demonstrate the approach on an uncertain 6 degrees of freedom spacecraft system and show that the solutions satisfy a given set of chance constraints.more » « less
-
Contact constraints arise naturally in many robot planning problems. In recent years, a variety of contact-implicit trajectory optimization algorithms have been developed that avoid the pitfalls of mode pre-specification by simultaneously optimizing state, input, and contact force trajectories. However, their reliance on first-order integrators leads to a linear tradeoff between optimization problem size and plan accuracy. To address this limitation, we propose a new family of trajectory optimization algorithms that leverage ideas from discrete variational mechanics to derive higher-order generalizations of the classic time-stepping method of Stewart and Trinkle. By using these dynamics formulations as constraints in direct trajectory optimization algorithms, it is possible to perform contact-implicit trajectory optimization with significantly higher accuracy. For concreteness, we derive a second-order method and evaluate it using several simulated rigid-body systems, including an underactuated biped and a quadruped. In addition, we use this second-order method to plan locomotion trajectories for a complex quadrupedal microrobot. The planned trajectories are evaluated on the physical platform and result in a number of performance improvements.more » « less
An official website of the United States government

