5G Millimeter Wave (mmWave) technology holds great promise for Connected Autonomous Vehicles (CAVs) due to its ability to achieve data rates in the Gbps range. However, mmWave suffers from a high beamforming overhead and requirement of line of sight (LOS) to maintain a strong connection. For Vehicle-to-Infrastructure (V2I) scenarios, where CAVs connect to roadside units (RSUs), these drawbacks become apparent. Because vehicles are dynamic, there is a large potential for link blockages. These blockages are detrimental to the connected applications running on the vehicle, such as cooperative perception and remote driver takeover. Existing RSU selection schemes base their decisions on signal strength and vehicle trajectory alone, which is not enough to prevent the blockage of links. Many modern CAVs motion planning algorithms routinely use other vehicle’s near-future path plans, either by explicit communication among vehicles, or by prediction. In this paper, we make use of the knowledge of other vehicle’s near future path plans to further improve the RSU association mechanism for CAVs. We solve the RSU association algorithm by converting it to a shortest path problem with the objective to maximize the total communication bandwidth. We evaluate our approach, titled B-AWARE, in simulation using Simulation of Urban Mobility (SUMO) and Digital twin for self-dRiving Intelligent VEhicles (DRIVE) on 12 highway and city street scenarios with varying traffic density and RSU placements. Simulations show B-AWARE results in a 1.05× improvement of the potential datarate in the average case and 1.28× in the best case vs. the state-of-the-art. But more impressively, B-AWARE reduces the time spent with no connection by 42% in the average case and 60% in the best case as compared to the state-of-the-art methods. This is a result of B-AWARE reducing nearly 100% of blockage occurrences.
more »
« less
Towards Energy-Aware Feedback Planning for Long-Range Autonomous Underwater Vehicles
Ocean ecosystems have spatiotemporal variability and dynamic complexity that require a long-term deployment of an autonomous underwater vehicle for data collection. A new generation of long-range autonomous underwater vehicles (LRAUVs), such as the Slocum glider and Tethys-class AUV, has emerged with high endurance, long-range, and energy-aware capabilities. These new vehicles provide an effective solution to study different oceanic phenomena across multiple spatial and temporal scales. For these vehicles, the ocean environment has forces and moments from changing water currents which are generally on the order of magnitude of the operational vehicle velocity. Therefore, it is not practical to generate a simple trajectory from an initial location to a goal location in an uncertain ocean, as the vehicle can deviate significantly from the prescribed trajectory due to disturbances resulted from water currents. Since state estimation remains challenging in underwater conditions, feedback planning must incorporate state uncertainty that can be framed into a stochastic energy-aware path planning problem. This article presents an energy-aware feedback planning method for an LRAUV utilizing its kinematic model in an underwater environment under motion and sensor uncertainties. Our method uses ocean dynamics from a predictive ocean model to understand the water flow pattern and introduces a goal-constrained belief space to make the feedback plan synthesis computationally tractable. Energy-aware feedback plans for different water current layers are synthesized through sampling and ocean dynamics. The synthesized feedback plans provide strategies for the vehicle that drive it from an environment’s initial location toward the goal location. We validate our method through extensive simulations involving the Tethys vehicle’s kinematic model and incorporating actual ocean model prediction data.
more »
« less
- PAR ID:
- 10282236
- Date Published:
- Journal Name:
- Frontiers in Robotics and AI
- Volume:
- 8
- ISSN:
- 2296-9144
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Visual monitoring operations underwater require both observing in close-proximity the objects of interest, and tracking the few feature-rich areas necessary for state estimation. This paper introduces the first navigation framework, called AquaVis, that produces on-line visibility-aware motion plans that enable Autonomous Underwater Vehicles (AUVs), to track multiple visual objectives with an arbitrary camera configuration in real-time. Using the proposed pipeline, AUVs can efficiently move in 3D, reach their goals while avoiding obstacles safely, and maximizing the visibility of multiple objectives along the path within a specified proximity. The method is sufficiently fast to be executed in real-time and is suitable for single or multiple camera configurations. Experimental results show the significant improvement on tracking multiple automatically-extracted points of interest, with low computational overhead and fast re-planning times.more » « less
-
This paper presents an integrated motion planning system for autonomous vehicle (AV) parking in the presence of other moving vehicles. The proposed system includes 1) a hybrid environment predictor that predicts the motions of the surrounding vehicles and 2) a strategic motion planner that reacts to the predictions. The hybrid environment predictor performs short-term predictions via an extended Kalman filter and an adaptive observer. It also combines short-term predictions with a driver behavior cost-map to make long-term predictions. The strategic motion planner comprises 1) a model predictive control-based safety controller for trajectory tracking; 2) a search-based retreating planner for finding an evasion path in an emergency; 3) an optimization-based repairing planner for planning a new path when the original path is invalidated. Simulation validation demonstrates the effectiveness of the proposed method in terms of initial planning, motion prediction, safe tracking, retreating in an emergency, and trajectory repairing.more » « less
-
Intelligent mobile sensors, such as uninhabited aerial or underwater vehicles, are becoming prevalent in environmental sensing and monitoring applications. These active sensing platforms operate in unsteady fluid flows, including windy urban environments, hurricanes and ocean currents. Often constrained in their actuation capabilities, the dynamics of these mobile sensors depend strongly on the background flow, making their deployment and control particularly challenging. Therefore, efficient trajectory planning with partial knowledge about the background flow is essential for teams of mobile sensors to adaptively sense and monitor their environments. In this work, we investigate the use of finite-horizon model predictive control (MPC) for the energy-efficient trajectory planning of an active mobile sensor in an unsteady fluid flow field. We uncover connections between trajectories optimized over a finite-time horizon and finite-time Lyapunov exponents of the background flow, confirming that energy-efficient trajectories exploit invariant coherent structures in the flow. We demonstrate our findings on the unsteady double gyre vector field, which is a canonical model for chaotic mixing in the ocean. We present an exhaustive search through critical MPC parameters including the prediction horizon, maximum sensor actuation, and relative penalty on the accumulated state error and actuation effort. We find that even relatively short prediction horizons can often yield energy-efficient trajectories. We also explore these connections on a three-dimensional flow and ocean flow data from the Gulf of Mexico. These results are promising for the adaptive planning of energy-efficient trajectories for swarms of mobile sensors in distributed sensing and monitoring.more » « less
-
Shoreward intrusions of anomalously salty water along the continental shelf of the Middle Atlantic Bight are often observed in spring and summer. Exchange of heat, nutrients, and carbon across the salinity-intrusion front has a significant impact on the marine ecosystem and fisheries. In this article, we developed a method of using an autonomous underwater vehicle (AUV) to detect a salinity-intrusion front and track the front’s movement. Autonomous front detection is based on the different vertical structures of salinity in the two distinct water types: the vertical difference of salinity is large in the intruding saltier water because of the salinity “tongue” at mid-depth, but is small in the nearshore fresher water due to absence of the salinity anomaly. Every time the AUV crosses and detects the front, the vehicle makes a turn at an oblique angle to cross the front, thus zigzagging through the front to map the frontal zone. The AUV’s zigzags sweep back and forth to track the front as it moves over time. From June 25 to 30, 2021, a Tethys-class long-range AUV mapped and tracked a salinity-intrusion front on the southern New England shelf. The frontal tracking revealed the salinity intrusion’s 3-D structure and temporal evolution with unprecedented detail.more » « less
An official website of the United States government

