skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: Securing Time in Untrusted Operating Systems with TimeSeal
An accurate sense of elapsed time is essential for the safe and correct operation of hardware, software, and networked systems. Unfortunately, an adversary can manipulate the system's time and violate causality, consistency, and scheduling properties of underlying applications. Although cryptographic techniques are used to secure data, they cannot ensure time security as securing a time source is much more challenging, given that the result of inquiring time must be delivered in a timely fashion. In this paper, we first describe general attack vectors that can compromise a system's sense of time. To counter these attacks, we propose a secure time architecture, TIMESEAL that leverages a Trusted Execution Environment (TEE) to secure time-based primitives. While CPU security features of TEEs secure code and data in protected memory, we show that time sources available in TEE are still prone to OS attacks. TIMESEAL puts forward a high-resolution time source that protects against the OS delay and scheduling attacks. Our TIMESEAL prototype is based on Intel SGX and provides sub-millisecond (msec) resolution as compared to 1-second resolution of SGX trusted time. It also securely bounds the relative time accuracy to msec under OS attacks. In essence, TIMESEAL provides the capability of trusted timestamping and trusted scheduling to critical applications in the presence of a strong adversary. It delivers all temporal use cases pertinent to secure sensing, computing, and actuating in networked systems.  more » « less
Award ID(s):
1705135
NSF-PAR ID:
10211574
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2019 IEEE Real-Time Systems Symposium (RTSS)
Page Range / eLocation ID:
80 to 92
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Today, isolated trusted computation and code execution is of paramount importance to protect sensitive information and workflows from other malicious privileged or unprivileged software. Intel Software Guard Extensions (SGX) is a set of security architecture extensions first introduced in the Skylake microarchitecture that enables a Trusted Execution Environment (TEE). It provides an ‘inverse sandbox’, for sensitive programs, and guarantees the integrity and confidentiality of secure computations, even from the most privileged malicious software (e.g. OS, hypervisor). SGX-capable CPUs only became available in production systems in Q3 2015, and they are not yet fully supported and adopted in systems. Besides the capability in the CPU, the BIOS also needs to provide support for the enclaves, and not many vendors have released the required updates for the system support. This has led to many wrong assumptions being made about the capabilities, features, and ultimately dangers of secure enclaves. By having access to resources and publications such as white papers, patents and the actual SGX-capable hardware and software development environment, we are in a privileged position to be able to investigate and demystify SGX. In this paper, we first review the previous trusted execution technologies, such as ARM Trust Zone and Intel TXT, to better understand and appreciate the new innovations of SGX. Then, we look at the details of SGX technology, cryptographic primitives and the underlying concepts that power it, namely the sealing, attestation, and the Memory Encryption Engine (MEE). We also consider use cases such as trusted and secure code execution on an untrusted cloud platform, and digital rights management (DRM). This is followed by an overview of the software development environment and the available libraries. 
    more » « less
  2. null (Ed.)
    In this paper, we propose a framework called Contego-TEE to secure Internet-of-Things (IoT) edge devices with timing requirements from control spoofing attacks where an adversary sends malicious control signals to the actuators. We use a trusted computing base available in commodity processors (such as ARM TrustZone) and propose an invariant checking mechanism to ensure the security and safety of the physical system. A working prototype of Contego-TEE was developed using embedded Linux kernel. We demonstrate the feasibility of our approach for a robotic vehicle running on an ARM-based platform. 
    more » « less
  3. Graphics Processing Units (GPU) are increasingly deployed on Cyber-physical Systems (CPSs), frequently used to perform real-time safety-critical functions, such as object detection on autonomous vehicles. As a result, availability is important for GPU tasks in CPS platforms. However, existing Trusted Execution Environments (TEE) solutions with availability guarantees focus only on CPU computing.To bridge this gap, we propose AvaGPU, a TEE that guarantees real-time availability for CPU tasks involving GPU execution under compromised OS. There are three technical challenges. First, to prevent malicious resource contention due to separate scheduling of CPU and GPU tasks, we proposed a CPU-GPU co-scheduling framework that couples the priority of CPU and GPU tasks. Second, we propose software-based secure preemption on GPU tasks to bound the degree of priority inversion on GPU. Third, we propose a new split design of GPU driver with minimized Trusted Computing Base (TCB) to achieve secure and efficient GPU management for CPS. We implement a prototype of AvaGPU on the Jetson AGX Orin platform. The system is evaluated on benchmark, synthetic tasks, and real-world applications with 15.87% runtime overhead on average. 
    more » « less
  4. Confidential computing aims to secure the code and data in use by providing a Trusted Execution Environment (TEE) for applications using hardware features such as Intel SGX.Timing and cache side-channel attacks, however, are often outside the scope of the threat model, although once exploited they are able to break all the default security guarantees enforced by hardware. Unfortunately, tools detecting potential side-channel vulnerabilities within applications are limited and usually ignore the strong attack model and the unique programming model imposed by Intel SGX. This paper proposes a precise side-channel analysis tool, ENCIDER, detecting both timing and cache side-channel vulnerabilities within SGX applications via inferring potential timing observation points and incorporating the SGX programming model into analysis. ENCIDER uses dynamic symbolic execution to decompose the side-channel requirement based on the bounded non-interference property and implements byte-level information flow tracking via API modeling. We have applied ENCIDER to 4 real-world SGX applications, 2 SGX crypto libraries, and 3 widely-used crypto libraries, and found 29 timing side channels and 73 code and data cache side channels. We have reported our findings to the corresponding parties, e.g., Intel and ARM, who have confirmed most of the vulnerabilities detected. 
    more » « less
  5. Intel SGX is a hardware-based trusted execution environment (TEE), which enables an application to compute on confidential data in a secure enclave. SGX assumes a powerful threat model, in which only the CPU itself is trusted; anything else is untrusted, including the memory, firmware, system software, etc. An enclave interacts with its host application through an exposed, enclave-specific, (usually) bi-directional interface. This interface is the main attack surface of the enclave. The attacker can invoke the interface in any order and inputs. It is thus imperative to secure it through careful design and defensive programming. In this work, we systematically analyze the attack models against the enclave untrusted interfaces and summarized them into the COIN attacks -- Concurrent, Order, Inputs, and Nested. Together, these four models allow the attacker to invoke the enclave interface in any order with arbitrary inputs, including from multiple threads. We then build an extensible framework to test an enclave in the presence of COIN attacks with instruction emulation and concolic execution. We evaluated ten popular open-source SGX projects using eight vulnerability detection policies that cover information leaks, control-flow hijackings, and memory vulnerabilities. We found 52 vulnerabilities. In one case, we discovered an information leak that could reliably dump the entire enclave memory by manipulating the inputs. Our evaluation highlights the necessity of extensively testing an enclave before its deployment. 
    more » « less