skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Improving measurements of similarity judgments with machine-learning algorithms
Intertemporal choices involve assessing options with different reward amounts available at different time delays. The similarity approach to intertemporal choice focuses on judging how similar amounts and delays are. Yet we do not fully understand the cognitive process of how these judgments are made. Here, we use machine-learning algorithms to predict similarity judgments to (1) investigate which algorithms best predict these judgments, (2) assess which predictors are most useful in predicting participants’ judgments, and (3) determine the minimum number of judgments required to accurately predict future judgments. We applied eight algorithms to similarity judgments for reward amount and time delay made by participants in two data sets. We found that neural network, random forest, and support vector machine algorithms generated the highest out-of-sample accuracy. Though neural networks and support vector machines offer little clarity in terms of a possible process for making similarity judgments, random forest algorithms generate decision trees that can mimic the cognitive computations of human judgment making. We also found that the numerical difference between amount values or delay values was the most important predictor of these judgments, replicating previous work. Finally, the best performing algorithms such as random forest can make highly accurate predictions of judgments with relatively small sample sizes (~ 15), which will help minimize the numbers of judgments required to extrapolate to new value pairs. In summary, machine-learning algorithms provide both theoretical improvements to our understanding of the cognitive computations involved in similarity judgments and intertemporal choices as well as practical improvements in designing better ways of collecting data.  more » « less
Award ID(s):
1658837
PAR ID:
10211595
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Computational Social Science
ISSN:
2432-2717
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A multimodal dataset is presented for the cognitive fatigue assessment of physiological minimally invasive sensory data of Electrocardiography (ECG) and Electrodermal Activity (EDA) and self-reporting scores of cognitive fatigue during HRI. Data were collected from 16 non-STEM participants, up to three visits each, during which the subjects interacted with a robot to prepare a meal and get ready for work. For some of the visits, a well-established cognitive test was used to induce cognitive fatigue. The developed cognitive fatigue assessment framework filtered noise from the raw signals, extracted relevant features, and applied machine learning regression algorithms, such as Support Vector Regression (SVR), Gradient Boosting Machine (GBM), and Random Forest Regressor (RFR) for estimating the Cognitive Fatigue (CF) level. 
    more » « less
  2. Abstract Intertemporal choices – decisions that play out over time – pervade our life. Thus, how people make intertemporal choices is a fundamental question. Here, we investigate the role of attribute latency (the time between when people start to process different attributes) in shaping intertemporal preferences using five experiments with choices between smaller-sooner and larger-later rewards. In the first experiment, we identify attribute latencies using mouse-trajectories and find that they predict individual differences in choices, response times, and changes across time constraints. In the other four experiments we test the causal link from attribute latencies to choice, staggering the display of the attributes. This changes attribute latencies and intertemporal preferences. Displaying the amount information first makes people more patient, while displaying time information first does the opposite. These findings highlight the importance of intra-choice dynamics in shaping intertemporal choices and suggest that manipulating attribute latency may be a useful technique for nudging. 
    more » « less
  3. Roman Bartak and Fazel Keshtkar and Michael Franklin (Ed.)
    This paper presents a novel method to automatically assess self-explanations generated by students during code comprehension activities. The self-explanations are produced in the context of an online learning environment that asks students to freely explain Java code examples line-by-line. We explored a number of models consisting of textual features in conjunction with machine learning algorithms such as Support Vector Regression (SVR), Decision Trees (DT), and Random Forests (RF). Support Vector Regression (SVR) performed best having a correlation score with human judgments of 0.7088. The best model used a combination of features such as semantic measures obtained using a Sentence BERT pre-trained model and from previously developed semantic algorithms used in a state-of-the-art intelligent tutoring system. 
    more » « less
  4. Abstract Stream solute monitoring has produced many insights into ecosystem and Earth system functions. Although new sensors have provided novel information about the fine‐scale temporal variation of some stream water solutes, we lack adequate sensor technology to gain the same insights for many other solutes. We used two machine learning algorithms – Support Vector Machine and Random Forest – to predict concentrations at 15‐min resolution for 10 solutes, of which eight lack specific sensors. The algorithms were trained with data from intensive stream sensing and manual stream sampling (weekly) for four full years in a hydrologic reference stream within the Hubbard Brook Experimental Forest in New Hampshire, USA. The Random Forest algorithm was slightly better at predicting solute concentrations than the Support Vector Machine algorithm (Nash‐Sutcliffe efficiencies ranged from 0.35 to 0.78 for Random Forest compared to 0.29 to 0.79 for Support Vector Machine). Solute predictions were most sensitive to the removal of fluorescent dissolved organic matter, pH and specific conductance as independent variables for both algorithms, and least sensitive to dissolved oxygen and turbidity. The predicted concentrations of calcium and monomeric aluminium were used to estimate catchment solute yield, which changed most dramatically for aluminium because it concentrates with stream discharge. These results show great promise for using a combined approach of stream sensing and intensive stream discrete sampling to build information about the high‐frequency variation of solutes for which an appropriate sensor or proxy is not available. 
    more » « less
  5. The ability to exert self-control varies within and across taxa. Some species can exert self-control for several seconds whereas others, such as large-brained vertebrates, can tolerate delays of up to several minutes. Advanced self-control has been linked to better performance in cognitive tasks and has been hypothesized to evolve in response to specific socio-ecological pressures. These pressures are difficult to uncouple because previously studied species face similar socio-ecological challenges. Here, we investigate self-control and learning performance in cuttlefish, an invertebrate that is thought to have evolved under partially different pressures to previously studied vertebrates. To test self-control, cuttlefish were presented with a delay maintenance task, which measures an individual's ability to forgo immediate gratification and sustain a delay for a better but delayed reward. Cuttlefish maintained delay durations for up to 50–130 s. To test learning performance, we used a reversal-learning task, whereby cuttlefish were required to learn to associate the reward with one of two stimuli and then subsequently learn to associate the reward with the alternative stimulus. Cuttlefish that delayed gratification for longer had better learning performance. Our results demonstrate that cuttlefish can tolerate delays to obtain food of higher quality comparable to that of some large-brained vertebrates. 
    more » « less