This study investigates the shear rate dependent margination of micro-particles (MPs) with different shapes in blood flow through numerical simulations. We develop a multiscale computational model to handle the fluid–structure interactions involved in the blood flow simulations. The lattice Boltzmann method (LBM) is used to solve the plasma dynamics and a coarse-grained model is employed to capture the dynamics of red blood cells (RBCs) and MPs. These two solvers are coupled together by the immersed boundary method (IBM). The shear rate dependent margination of sphere MPs is firstly investigated. We find that margination of sphere MPs dramatically increases with the increment of wall shear rate  ω under 800 s −1 , induced by the breaking of rouleaux in blood flow. However, the margination probability only slowly grows when  ω > 800 s −1 . Furthermore, the shape effect of MPs is examined by comparing the margination behaviors of sphere-like, oblate-like and prolate-like MPs under different wall shear rates. We find that the margination of MPs is governed by the interplay of two factors: hydrodynamic collisions with RBCs including the collision frequency and collision displacement of MPs, and near wall dynamics. MPs that demonstrate poor performance in one process such as collision frequency may stand out in the other process like near wall dynamics. Specifically, the ellipsoidal MPs (oblate and prolate) with small aspect ratio (AR) outperform those with large AR regardless of the wall shear rate, due to their better performance in both the collision with RBCs and near wall dynamics. Additionally, we find there exists a transition shear rate region 700 s −1 <  ω < 900 s −1 for all of these MPs: the margination probability dramatically increases with the shear rate below this region and slowly grows above this region, similar to sphere MPs. We further use the surface area to volume ratio (SVR) to distinguish different shaped MPs and illustrate their shear rate dependent margination in a contour in the shear rate–SVR plane. It is of significance that we can approximately predict the margination of MPs with a specific SVR. All these simulation results can be potentially applied to guide the design of micro-drug carriers for biomedical applications. 
                        more » 
                        « less   
                    
                            
                            Red blood cell hitchhiking enhances the accumulation of nano- and micro-particles in the constriction of a stenosed microvessel
                        
                    
    
            We investigate the circulation of nano- and micro-particles, including spherical particles and filamentous nanoworms, with red blood cells (RBCs) suspension in a constricted channel that mimics a stenosed microvessel. Through three-dimensional simulations using the immersed boundary-based Lattice Boltzmann method, the influence of channel geometries, such as the length and ratio of the constriction, on the accumulation of particles is systematically studied. Firstly, we find that the accumulation of spherical particles with 1 μm diameter in the constriction increases with the increases of both the length and ratio of the constriction. This is attributed to the interaction between spheres and RBCs. The RBCs “carry” the spheres and they accumulate inside the constriction together, due to the altered local hydrodynamics induced by the existence of the constriction. Secondly, nanoworms demonstrate higher accumulation than that of spheres inside the constriction, which is associated with the escape of nanoworms from RBC clusters and their accumulation near the wall of main channel. The accumulated near-wall nanoworms will eventually enter the constriction, thus enhancing their concentration inside the constriction. However, an exceptional case occurs in the case of constrictions with large ratio and long length. In such circumstances, the RBCs aggregate together tightly and concentrate at the center of the channel, which makes the nanoworms hardly able to escape from RBC clusters, leading to a similar accumulation of nanoworms and spheres inside the constriction. This study may provide theoretical guidance for the design of nano- and micro-particles for biomedical engineering applications, such as drug delivery systems for patients with stenosed microvessels. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1755779
- PAR ID:
- 10211810
- Date Published:
- Journal Name:
- Soft Matter
- Volume:
- 17
- Issue:
- 1
- ISSN:
- 1744-683X
- Page Range / eLocation ID:
- 40 to 56
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The splenic interendothelial slits fulfill the essential function of continuously filtering red blood cells (RBCs) from the bloodstream to eliminate abnormal and aged cells. To date, the process by which 8 m RBCs pass through 0.3 m-wide slits remains enigmatic. Does the slit caliber increase during RBC passage as sometimes suggested? Here, we elucidated the mechanisms that govern the RBC retention or passage dynamics in slits by combining multiscale modeling, live imaging, and microfluidic experiments on an original device with submicron-wide physiologically calibrated slits. We observed that healthy RBCs pass through 0.28 m-wide rigid slits at 37 °C. To achieve this feat, they must meet two requirements. Geometrically, their surface area-to-volume ratio must be compatible with a shape in two tether-connected equal spheres. Mechanically, the cells with a low surface area-to-volume ratio (28% of RBCs in a 0.4 m-wide slit) must locally unfold their spectrin cytoskeleton inside the slit. In contrast, activation of the mechanosensitive PIEZO1 channel is not required. The RBC transit time through the slits follows a 1 and 3 power law with in-slit pressure drop and slip width, respectively. This law is similar to that of a Newtonian fluid in a two-dimensional Poiseuille flow, showing that the dynamics of RBCs is controlled by their cytoplasmic viscosity. Altogether, our results show that filtration through submicron-wide slits is possible without further slit opening. Furthermore, our approach addresses the critical need for in vitro evaluation of splenic clearance of diseased or engineered RBCs for transfusion and drug delivery.more » « less
- 
            Beard, Daniel A (Ed.)The geometry of the blood vessel wall plays a regulatory role on the motion of red blood cells (RBCs). The overall topography of the vessel wall depends on many features, among which the endothelial lining of the endothelial surface layer (ESL) is an important one. The endothelial lining of vessel walls presents a large surface area for exchanging materials between blood and tissues. The ESL plays a critical role in regulating vascular permeability, hindering leukocyte adhesion as well as inhibiting coagulation during inflammation. Changes in the ESL structure are believed to cause vascular hyperpermeability and entrap immune cells during sepsis, which could significantly alter the vessel wall geometry and disturb interactions between RBCs and the vessel wall, including the wall-induced migration of RBCs and the thickening of a cell-free layer. To investigate the influence of the vessel wall geometry particularly changed by the ESL under various pathological conditions, such as sepsis, on the motion of RBCs, we developed two models to represent the ESL using the immersed boundary method in two dimensions. In particular, we used simulations to study how the lift force and drag force on a RBC near the vessel wall vary with different wall thickness, spatial variation, and permeability associated with changes in the vessel wall geometry. We find that the spatial variation of the wall has a significant effect on the wall-induced migration of the RBC for a high permeability, and that the wall-induced migration is significantly inhibited as the vessel diameter is increased.more » « less
- 
            Hydrodynamic interactions generate a diffusive motion in particulates in a shear flow, which plays seminal roles in overall particulate rheology and its microstructure. Here we investigate the shear induced diffusion in a red-blood cell (RBC) suspension using a numerical simulation resolving individual motion and deformation of RBCs. The non-spherical resting shape of RBCs gives rise to qualitatively different regimes of cell dynamics in a shear flow such as tank-treading, breathing, tumbling and swinging, depending on the cell flexibility determined by the elastic capillary number. We show that the transition from tumbling to tank-treading causes a reduction in the gradient diffusivity. The diffusivity is computed using a continuum approach from the evolution of a randomly packed cell-layer width with time as well as by the dynamic structure factor of the suspension. Both approaches, although operationally different, match and show that for intermediate capillary numbers RBCs cease tumbling accompanied by a drop in the coefficient of gradient diffusivity. A further increase of capillary number increases the diffusivity due to increased deformation. The effects of bending modulus and viscosity ratio variations are also briefly investigated. The computed shear induced diffusivity was compared with values in the literature. Apart from its effects in margination of cells in blood flow and use in medical diagnostics, the phenomenon broadly offers important insights into suspensions of deformable particles with non-spherical equilibrium shapes, which also could play a critical role in using particle flexibility for applications such as label free separation or material processing.more » « less
- 
            Red blood cell (RBC) disorders such as sickle cell disease affect billions worldwide. While much attention focuses on altered properties of aberrant RBCs and corresponding hemodynamic changes, RBC disorders are also associated with vascular dysfunction, whose origin remains unclear and which provoke severe consequences including stroke. Little research has explored whether biophysical alterations of RBCs affect vascular function. We use a detailed computational model of blood that enables characterization of cell distributions and vascular stresses in blood disorders and compare simulation results with experimental observations. Aberrant RBCs, with their smaller size and higher stiffness, concentrate near vessel walls (marginate) because of contrasts in physical properties relative to normal cells. In a curved channel exemplifying the geometric complexity of the microcirculation, these cells distribute heterogeneously, indicating the importance of geometry. Marginated cells generate large transient stress fluctuations on vessel walls, indicating a mechanism for the observed vascular inflammation.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    