skip to main content


Title: Marginal Uncertainty Cost Functions for Solar Photovoltaic, Wind Energy, Hydro Generators, and Plug-In Electric Vehicles
The high penetration of renewable sources of energy in electrical power systems implies an increase in the uncertainty variables of the economic dispatch (ED). Uncertainty costs are a metric to quantify the variability introduced from renewable energy generation, that is to say: wind energy generation (WEG), run-of-the-river hydro generators (RHG), and solar photovoltaic generation (PVG). On other side, there are associated uncertainties to the charge/uncharge of plug-in electric vehicles (PEV). Thus, in this paper, the uncertainty cost functions (UCF) and their marginal expressions as a way of modeling and assessment of stochasticity in power systems with high penetration of smart grids elements is presented. In this work, a mathematical analysis is presented using the first and second derivatives of the UCF, where the marginal uncertainty cost functions (MUCF) and the UCF’s minimums for PVG, WEG, PEV, and RHG are derived. Further, a model validation is presented, considering comparative test results from the state of the art of the UCF minimum, developed in a previous study, to the minimum reached with the presented (MUCF) solution.  more » « less
Award ID(s):
1646229
NSF-PAR ID:
10211818
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Energies
Volume:
13
Issue:
23
ISSN:
1996-1073
Page Range / eLocation ID:
6375
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study the market structure for emerging distribution-level energy markets with high renewable energy penetration. Renewable generation is known to be uncertain and has a close-to-zero marginal cost. In this paper, we use solar energy as an example of such zero-marginal-cost resources for our focused study. We first show that, under high penetration of solar generation, the classical real-time market mechanism can either exhibit significant price-volatility (when each firm is not allowed to vary the supply quantity), or induce price-fixing (when each firm is allowed to vary the supply quantity), the latter of which leads to extreme unfairness of surplus division. To overcome these issues, we propose a new rental-market mechanism that trades the usage-right of solar panels instead of real-time solar energy. We show that the rental market produces a stable and unique price (therefore eliminating price-volatility), maintains positive surplus for both consumers and firms (therefore eliminating price-fixing), and achieves the same social welfare as the traditional real-time market. A key insight is that rental markets turn uncertainty of renewable generation from a detrimental factor (that leads to price-volatility in real-time markets) to a beneficial factor (that increases demand elasticity and contributes to the desirable rental-market outcomes). 
    more » « less
  2. null (Ed.)
    A variety of methods have been proposed to assist the integration of microgrid in flow shop systems with the goal of attaining eco-friendly operations. There is still a lack of integrated planning models in which renewable portfolio, microgrid capacity and production plan are jointly optimized under power demand and generation uncertainty. This paper aims to develop a two-stage, mixed-integer programming model to minimize the levelized cost of energy of a flow shop powered by onsite renewables. The first stage minimizes the annual energy use subject to a job throughput requirement. The second stage aims at sizing wind turbine, solar panels and battery units to meet the hourly electricity needs during a year. Climate analytics are employed to characterize the stochastic wind and solar capacity factor on an hourly basis. The model is tested in four locations with a wide range of climate conditions. Three managerial insights are derived from the numerical experiments. First, time-of-use tariff significantly stimulates the wind penetration in locations with medium or low wind speed. Second, regardless of the climate conditions, large-scale battery storage units are preferred under time-of-use rate but it is not the case under a net metering policy. Third, wind- and solar-based microgrid is scalable and capable of meeting short-term demand variation and long-term load growth with a stable energy cost rate. 
    more » « less
  3. Facing stochastic variations of the loads due to an increasing penetration of renewable energy generation, online decision making under uncertainty in modern power systems is capturing power researchers' attention in recent years. To address this issue while achieving a good balance between system security and economic objectives, we propose a surrogate-enhanced scheme under a joint chance-constrained (JCC) optimal power-flow (OPF) framework. Starting from a stochastic-sampling procedure, we first utilize the copula theory to simulate the dependence among multivariate uncertain inputs. Then, to reduce the prohibitive computational time required in the traditional Monte-Carlo (MC) method, we propose to use a polynomial-chaos-based surrogate that allows us to efficiently evaluate the power-system model at non-Gaussian distributed sampled values with a negligible computing cost. Learning from the MC simulated samples, we further proposed a hybrid adaptive approach to overcome the conservativeness of the JCC-OPF by utilizing correlation of the system states, which is ignored in the traditional Boole's inequality. The simulations conducted on the modified Illinois test system demonstrate the excellent performance of the proposed method. 
    more » « less
  4. As the renewable penetration in the grid increases, the grid-takes-all-renewable paradigm will no longer be sustainable. We consider a day-ahead (DA) electricity market composed of a renewable generator, a natural gas power plant (NGPP) and a coal power plant (CPP). Each player provides the Independent System Operator (ISO) with their commitment and their asking price. The ISO schedules the generators using a least-cost strategy. Because of the intrinsic uncertainty of the renewable generation, the renewable player might be unable to meet its DA commitment. In the event of a shortfall, the renewable generator incurs a penalty so that the non-renewable sources are not forced to consume the cost of renewable intermittence. It has been recognized that such a penalty can lead to conservative bidding by the renewable generator, which may lead to lower than desired penetration of renewable energy in the grid. We formulate and analyze a contract between the renewable producer and the NGPP so that the NGPP reserves some amount of natural gas to hedge the renewable producer against shortfalls. Expressions for the optimal commitments of the players and for the optimal reserve contract are derived. When a reserve contract is established, we observe an increase both in the average profit of the players involved and in the renewable participation in the market. Thus, we show that a Pareto-optimal contract between market players can improve renewable penetration. 
    more » « less
  5. Proper integration of energy storage systems (ESS) into existing or future grids will depend on the effectiveness of models which seek optimal placement and sizing at the transmission and distribution levels. Current literature reviews reveal sizing methodologies can be improved to ease infrastructure integration, and those works with models useful for planning focus solely on micro-grids, wind power and forecasting, photovoltaics, or small communities. It is of interest to create an efficient, reliable ESS sizing model for large scale grids that contains interpretable models, has less sensitivity due to low model uncertainty, yet still is dependable due to an imposed reliability criterion. This work determined the minimum feasible size ESS to satisfy reserve requirements for a power grid with a high penetration of renewable sources. Results showed imposing a reliability criterion through loss of load expectation (LOLE) and energy index of reliability (EIR) resulted in more conservative capacity needs. 
    more » « less