We study the market structure for emerging distribution-level energy markets with high renewable energy penetration. Renewable generation is known to be uncertain and has a close-to-zero marginal cost. In this paper, we use solar energy as an example of such zero-marginal-cost resources for our focused study. We first show that, under high penetration of solar generation, the classical real-time market mechanism can either exhibit significant price-volatility (when each firm is not allowed to vary the supply quantity), or induce price-fixing (when each firm is allowed to vary the supply quantity), the latter of which leads to extreme unfairness of surplus division. To overcome these issues, we propose a new rental-market mechanism that trades the usage-right of solar panels instead of real-time solar energy. We show that the rental market produces a stable and unique price (therefore eliminating price-volatility), maintains positive surplus for both consumers and firms (therefore eliminating price-fixing), and achieves the same social welfare as the traditional real-time market. A key insight is that rental markets turn uncertainty of renewable generation from a detrimental factor (that leads to price-volatility in real-time markets) to a beneficial factor (that increases demand elasticity and contributes to the desirable rental-market outcomes).
more »
« less
Marginal Uncertainty Cost Functions for Solar Photovoltaic, Wind Energy, Hydro Generators, and Plug-In Electric Vehicles
The high penetration of renewable sources of energy in electrical power systems implies an increase in the uncertainty variables of the economic dispatch (ED). Uncertainty costs are a metric to quantify the variability introduced from renewable energy generation, that is to say: wind energy generation (WEG), run-of-the-river hydro generators (RHG), and solar photovoltaic generation (PVG). On other side, there are associated uncertainties to the charge/uncharge of plug-in electric vehicles (PEV). Thus, in this paper, the uncertainty cost functions (UCF) and their marginal expressions as a way of modeling and assessment of stochasticity in power systems with high penetration of smart grids elements is presented. In this work, a mathematical analysis is presented using the first and second derivatives of the UCF, where the marginal uncertainty cost functions (MUCF) and the UCF’s minimums for PVG, WEG, PEV, and RHG are derived. Further, a model validation is presented, considering comparative test results from the state of the art of the UCF minimum, developed in a previous study, to the minimum reached with the presented (MUCF) solution.
more »
« less
- Award ID(s):
- 1646229
- PAR ID:
- 10211818
- Date Published:
- Journal Name:
- Energies
- Volume:
- 13
- Issue:
- 23
- ISSN:
- 1996-1073
- Page Range / eLocation ID:
- 6375
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
As the renewable penetration in the grid increases, the grid-takes-all-renewable paradigm will no longer be sustainable. We consider a day-ahead (DA) electricity market composed of a renewable generator, a natural gas power plant (NGPP) and a coal power plant (CPP). Each player provides the Independent System Operator (ISO) with their commitment and their asking price. The ISO schedules the generators using a least-cost strategy. Because of the intrinsic uncertainty of the renewable generation, the renewable player might be unable to meet its DA commitment. In the event of a shortfall, the renewable generator incurs a penalty so that the non-renewable sources are not forced to consume the cost of renewable intermittence. It has been recognized that such a penalty can lead to conservative bidding by the renewable generator, which may lead to lower than desired penetration of renewable energy in the grid. We formulate and analyze a contract between the renewable producer and the NGPP so that the NGPP reserves some amount of natural gas to hedge the renewable producer against shortfalls. Expressions for the optimal commitments of the players and for the optimal reserve contract are derived. When a reserve contract is established, we observe an increase both in the average profit of the players involved and in the renewable participation in the market. Thus, we show that a Pareto-optimal contract between market players can improve renewable penetration.more » « less
-
Power grid resource adequacy can be difficult to ensure with high penetrations of intermittent renewable energy. We explore enhancing resource adequacy by overbuilding renewables while modeling statistical correlations in renewable power at different sites. Overbuilding allows production during times of low power, and exploiting statistical correlations can reduce power variability and, subsequently, reduce needed renewable capacity. In this work, we present a stochastic optimization problem to size renewables and expand transmission while minimizing the expected dispatch cost. Our method uses statistical profiles of renewable production and embeds network constraints using the DC power flow equations. We assess our method’s effects on feasibility, load shedding, locational marginal prices, and generator curtailment. On the IEEE 9-bus system, we found that anti-correlation between generators reduced generation capacity needs with sufficient transmission. On the IEEE 30-bus system, we found that the optimal solution required significant overbuilding and curtailment of renewables regardless of the marginal cost of schedulable generation.more » « less
-
The intermittent nature of renewable energy generation implies that renewable producers rely on non-renewable producers to ensure the aggregate power delivered meets the promised quality of service. Therefore, the intermittent nature of renewable energy generation affects the committed power and market price of energy. We consider an electricity market where renewable and non-renewable generators bid by proposing their asking price per unit of energy to an independent system operator (ISO). The ISO solves a dispatch optimization problem to minimize the cost of purchased energy on behalf of the consumers. We incorporate the notion of net-load variance using the Conditional Value-at-Risk (CVAR) measure in the dispatch optimization problem to ensure that the generators are able to meet the load within a desired confidence level. We analytically derive the market clearing price of energy and dispatched powers as a function of CVAR and show that a higher penetration of renewable energies may increase the market clearing price of energy. Finally, we present descriptive simulations to illustrate the impact of renewable energy penetration on the market price of energy.more » « less
-
Facing stochastic variations of the loads due to an increasing penetration of renewable energy generation, online decision making under uncertainty in modern power systems is capturing power researchers' attention in recent years. To address this issue while achieving a good balance between system security and economic objectives, we propose a surrogate-enhanced scheme under a joint chance-constrained (JCC) optimal power-flow (OPF) framework. Starting from a stochastic-sampling procedure, we first utilize the copula theory to simulate the dependence among multivariate uncertain inputs. Then, to reduce the prohibitive computational time required in the traditional Monte-Carlo (MC) method, we propose to use a polynomial-chaos-based surrogate that allows us to efficiently evaluate the power-system model at non-Gaussian distributed sampled values with a negligible computing cost. Learning from the MC simulated samples, we further proposed a hybrid adaptive approach to overcome the conservativeness of the JCC-OPF by utilizing correlation of the system states, which is ignored in the traditional Boole's inequality. The simulations conducted on the modified Illinois test system demonstrate the excellent performance of the proposed method.more » « less
An official website of the United States government

